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These notes describe a polynomial method for trajectory optimization. In particular, our goal is to generate
a trajectory which is smooth enough to be traversable by a quadrotor. For this purpose we will introduce
an optimal control problem and solve it using the Euler-Lagrange equation. Then, in the next lecture, we
will use a quadratic programming approach.

In the single segment case, the goal is to compute a trajectory from a point A to a point B. In the multi
segment case, we have intermediate waypoints, and we want to compute a trajectory passing through all
of them. The latter case is more common in practice, where one would use a path planner (e.g., RRT∗) to
obtain a set of waypoints, and then compute a smoother trajectory (as opposed to a path) using polynomial
trajectory optimization.

9.1 Trajectory Optimization for Quadrotors

9.1.1 Optimal control basics

Optimal control tries to find input functions u(t) and the corresponding state trajectories x(t) that maximize
performance (or minimize a cost) under constraints. As example of optimal control problem is given below:

min
x(t),u(t)

J(u(t),x(t))

subject to ẋ(t) = f(x(t),u(t))

x(0) = x̄0

x(T ) = x̄T

umin ≤ u(t) ≤ umax

xmin ≤ x(t) ≤ xmax

(9.1)

where J is the functional (e.g., quantifying energy, path length, input usage) we want to minimize, ẋ(t) =
f(x(t),u(t)) enforces the dynamics of the system, x̄0 and x̄T represent given initial and final states, and
umin,umax,xmin,xmax are given input and state bounds. In general, the decision variables (x(t),u(t)) are
continuous functions and finding a solution to (9.1) is challenging.

Some terminology. The so-called indirect methods reformulate (9.1) as a two-point boundary problem
using Pontryagin’s maximum principle. Boundary problems are difficult to solve in general. More recently,
the fast-paced advances in nonlinear programming (NLP) promoted the use of direct methods, where (9.1) is
first discretized (or, in general, rewritten using a finite parametrization), converted to a nonlinear program,
and then solved using NLP techniques. In shooting methods, we optimize over control command only and
eliminate the states using the system dynamics (intuitively: the trajectory of x(t) is fixed for a given initial
state and choice of control). In collocation methods, we jointly optimize over controls and states as in (9.1).
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This formulation typically makes it easier to enforce constraints over the states (obstacles, waypoints, etc.).
We refer the interested reader to [2] for more details.

In the following, we will use a direct method and use differential flatness to avoid optimizing over states and
controls.

9.1.2 Differential flatness

Our initial objective is to generate a smooth trajectory to allow the drone to fly from an initial to a final
point. In lectures 6-7, we have shown the drone dynamics are differentially flat, which means there is a flat
output σ(t) = [x, y, z, ψ]T such that the state and the input can be defined as smooth functions of this flat
output and its derivatives, i.e., x(t) = hx(σ, σ̇, σ̈, . . .) and u = hu(σ, σ̇, σ̈, . . .).

Therefore, for differentially flat systems, we can rewrite the objective in (9.1) as:

J(u(t),x(t)) = J(hu(σ, σ̇, σ̈, . . .), hx(σ, σ̇, σ̈, . . .)) = J(σ, σ̇, σ̈, . . .) (9.2)

where, with slight abuse of notation, we also use J(·) to denote the cost expressed as a function of the flat
output.

9.1.3 Minimum Snap Trajectory Optimization

Cost functional. In lectures 6-7, we have seen that the drone inputs can be written in terms of the 4th
derivative of the position of the drone (x, y, z) and the 2nd derivative of the drone yaw angle ψ. Therefore,
to obtain a smooth trajectory (i.e., one with low input usage), we can minimize the 4th derivative of the
positions (or, equivalently, the 4th derivative of the first three entry of our flat output σ(t) = [x, y, z, ψ]T)
and the 2nd derivative of the yaw angle (or, equivalently, the 2nd derivative of the last entry of σ):

J(σ, σ̇, σ̈, . . .) =

∫ T

0

(x(4)(t))2dt+

∫ T

0

y(4)(t)
2
dt+

∫ T

0

z(4)(t)
2
dt+

∫ T

0

ψ(2)(t)
2
dt (9.3)

The previous expression represents the functional we want to minimize to obtain a smooth trajectory.

Constraints (single segment). Here, we are mainly concerned with computing trajectories from a point
A (at time 0) to a point B (at the final time T ). Therefore, we only consider the following set of end-point
constraints:

σ(0) = σ0 (initial state) (9.4)

σ(1)(0) = σ
(1)
0 (first derivative at starting point)

...

σ(q)(0) = σ
(q)
0 (q-th derivative at starting point)

σ(T ) = σT (final state)

σ(1)(T ) = σ
(1)
T (first derivative at end point)

...

σ(q)(T ) = σ
(q)
T (q-th derivative at end point)

Note that the systems dynamic is omitted in this formulation, since we implicitly incorporate the relation
between inputs and state using flat outputs.
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9.2 Polynomial Trajectory Optimization

In order to minimize (9.3) under constraints (9.4), we adopt a direct method and assume a (finite-dimensional)
polynomial parametrization of the flat output σ. Polynomial functions are good candidates to model smooth
trajectories. Moreover, they are easy to differentiate, which will be handy when dealing with the high-order
derivatives in (9.3) and (9.4).

Since the cost function is the sum of 4 independent terms (and the constraints can be split accordingly),
we can optimize the problem with respect to the flat outputs x, y, z, and φ, separately. For the rest of
the lecture, we focus on a single scalar decision variable x(t) and we assume it to be a polynomial function,
i.e., x(t) = P (t), where P (t) = pN t

N + pN−1t
N−1 + ... + p2t

2 + p1t + p0 is a polynomial of order N , and
pi, i = 0, .., N are the polynomial coefficients. Moreover, we phrase the problem as the generic minimization
of the r-th derivative of x(t), hence the formulation can be easily applied to minimize the 4th derivative of
x, y, and z, or the second derivative of ψ.

Therefore, the single-segment trajectory optimization problem for a flat polynomial output x(t) = P (t)
becomes:

minimize
P (t)

∫ T

0

(P (r)(t))2dt

subject to P (0) = x0

...

P (q)(0) = x
(q)
0

P (T ) = xT

...

P (q)(T ) = x
(q)
T

(9.5)

Depending on the derivative r being minimized, the problem obtains different trajectories:

• r = 1 minimum velocity trajectory (shortest distance);

• r = 2 minimum acceleration trajectory;

• r = 3 minimum jerk trajectory;

• r = 4 minimum snap trajectory.

9.3 Euler-Lagrange-based Trajectory Optimization

In this method, the order of the polynomial is not fixed and can be found by solving (9.5). We use Euler-
Lagrange differential equation to find the polynomial order. Then, the end-point constraints are used to find
the polynomial coefficients [1, 3].

Euler-Lagrange equation. In calculus of variations, the Euler-Lagrange equation is a second-order partial
differential equation. Its solutions are the functions that minimize/maximize a given functional J(x, ẋ, t) =∫ T

0
L(x, ẋ, t)dt:

∂L
∂x
− d

dt

∂L
∂ẋ

= 0 (9.6)

Note: The Euler-Lagrange equation is a necessary condition for a stationary point of J(x, ẋ, t).
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The Euler-Lagrange equation also extends to the general case J(x, ẋ, ẍ, ..., x(r)(t), t) =
∫ T

0
L(x, ẋ, ẍ, ..., x(r)(t), t)dt

–as in (9.5)– leading to the following general equation:

r∑
k=0

(−1)k
dk

dtk

(
∂L
∂x(k)

)
= 0 (9.7)

Example. Assuming a polynomial trajectory x(t) = P (t), minimum snap trajectory optimization (r = 4
and L = (P (4)(t))2) leads to the following Euler-Lagrange equation:

∂L
∂P
− d

dt

(
∂L
∂Ṗ

)
+
d2

dt2

(
∂L
∂P̈

)
− d3

dt3

(
∂L
∂

...
P

)
+
d4

dt4

(
∂L
∂P (4)

)
= 0 (9.8)

Since our L = (P (4)(t))2 only depends on the 4-th derivative, all the terms ∂L
∂P (i) are zero for i 6= r. Therefore,

the previous expression simplifies to:

d4

dt4

(
∂L
∂P (4)

)
= 0⇒ d4

dt4

(
2P (4)(t)

)
= 0⇒ d8

dt8
P (t) = 0 (9.9)

The solution of differential equation above is nothing but a polynomial with order of N = 7

P (t) = p7t
7 + p6t

6 + p5t
5 + p4t

4 + ...+ p1t
1 + p0 (9.10)

To find the coefficients pi, i = 0, ..., 7, the constraints in (9.5) can be written as linear equations of coefficients:

A8×8 p = b8×1 (9.11)

Where, p is the vector of coefficients p = [p0, p1, ..., p7]T. For instance, for a trajectory with one segment
(one start and one ending point), we can assume the drone to start and end at a specific location (2 linear
constraints), and we can assume the drone is stationary at the start and end points and its velocity, and
acceleration are zero (i.e. P (i)(t) = 0, i = 1, 2, 3), resulting in 6 constraints (3 at the start, and 3 at the end
point). This gives us a total of 8 constraints which allow finding all the polynomial coefficients.

General case. In general, for L = (P (r)(t))2, the solution of Euler Lagrange equation is a polynomial with
order N = 2r − 1, which –in the single-segment case– requires 2r constraints.

9.3.1 Trajectory with waypoints

In practice, it is convenient to break down long trajectories into multiple segments, where the end-point
of each segment corresponds to a waypoint we want the robot to follow. We refer to this setup as multi-
segment trajectory optimization. As in the previous section, we assume a polynomial parametrization for
the trajectory in each segment. For instance, assume a trajectory with 3 segments:

P (t) =


P1(t), t0 ≤ t ≤ t1
P2(t), t1 ≤ t ≤ t2
P3(t), t2 ≤ t ≤ t3

(9.12)

Then the cost functional becomes:

J =

∫ t1

t0

(
P

(r)
1 (t)

)2
dt+

∫ t2

t1

(
P

(r)
2 (t)

)2
dt+

∫ t3

t2

(
P

(r)
3 (t)

)2
dt (9.13)

An example for the case of r = 2 (minimum acceleration) is given in Fig. 9.1.



Lecture 9: Trajectory Optimization I 9-5

Figure 9.1: Multi-segment minimum acceleration (r = 2) trajectory optimization with 3 segments.

If each polynomial has degree N , we now have 3(N+1) unknown coefficients we need to compute. Therefore,
we need to ensure we have enough constraints to allow computing a unique choice of coefficients. We have
3 type of constraints:

• waypoint constraints: by design we want to constrain the polynomial to pass through the specified
waypoints (x̄0, x̄1, x̄2, x̄3 in Fig. 9.1). The corresponding constraints are shown in black in the figure
(6 constraints in this example).

• free derivatives: in order to have a continuous and smooth trajectory, the trajectory and its deriva-
tives should be continuous. For the trajectory with 3 segments, the continuity condition for the first
and second derivative are shown in magenta in Fig. 9.1 (4 constraints in this example). In general, for
a polynomial of order N , the continuity of derivatives up to N − 1 can be enforced in the constraints.

• fixed derivatives: since the constraints introduced so far might not be enough to compute all the
coefficients, we can introduce extra constraints on the derivatives at the initial point and the final point.
For instance, we can enforce that the drone starts and ends with zero velocity. These constraints are
shown in orange in Fig. 9.1 (2 constraints in this example)
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