16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone

Lecture 12: Feature Detection

Part of the following slides are inspired and built on the lecture slides of Professor Frank Dellaert's course.

Digital Photography

2D array of "light sensors"

- CCD (charge-coupled device, 1960)
- CMOS (complementary metal-oxide semiconductor, 1963)

	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93
the second se	• 0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97
	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93
					900 PH	ilg@mit.e	du				

Appearance: Light and Colors

Perceived appearance is the result of (i) geometry, (ii) illumination, (iii) material properties

Perspective Projection Recap

- what is lost?
 - depth?

f = focal length c = center of the camera

Ames Room

Ames, 1946

Perspective Projection Recap

- what is lost?
 - depth?
 - length?
 - angles?

Parallel lines which intersect ...

Perspective Projection Recap

• what is preserved?

straight lines remain straight ,

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

The final Touch: Adding a Lens

- Pinhole model is based on the geometry of the camera obscura
- In practice: add a lens in front of the aperture to capture more light
- Pinhole model holds, but **distortion** may appear due lens imperfections

- distortion can be described mathematically using **distortion parameters**
 - can be estimated during calibration and compensated for (undistortion)

Today

- Feature Detection
- Feature Tracking
- Feature Matching

Chapter 4 Image Primitives and Correspondence

Feature detection

What is a feature?

- a *recognizable* structure in the environment
 - lines, corners
 - geometric primitives (e.g., circles)
 - objects (high-level features)

Why extracting features?

- data compression
 - # of pixels in a modern camera: 4416 x 1242 ~ 5M
 - # of parameters to describe a line: 2 (4 for a segment)
- easier to describe mathematically: points, lines, ...

- Why do we care?
 - Motion tracking
 - 3D reconstruction
 - Object recognition

• ...

- corners: also known as interest points, keypoints, or point features
 - easily identifiable points in the image
 - or: if given a corner in image *I*₁, we can easily find corresponding pixel in *I*₂ (both images are picturing the same scene from different viewpoints)

- corners: also known as interest points, keypoints, or point features
 - easily identifiable points in the image
 - or: if given a corner in image *I*₁, we can easily find corresponding pixel in *I*₂ (both images are picturing the same scene from different viewpoints)

- corners: also known as interest points, keypoints, or point features
 - easily identifiable points in the image
 - or: if given a corner in image *I*₁, we can easily find corresponding pixel in *I*₂ (both images are picturing the same scene from different viewpoints)

- corners: also known as interest points, keypoints, or point features
 - easily identifiable points in the image
 - or: if given a corner in image *I*₁, we can easily find corresponding pixel in *I*₂ (both images are picturing the same scene from different viewpoints)

- corners: also known as interest points, keypoints, or point features
 - easily identifiable points in the image
 - or: if given a corner in image *I*₁, we can easily find corresponding pixel in *I*₂ (both images are picturing the same scene from different viewpoints)

Image Gradients

From gradients to finite differences

• we can compute a "cornerness score" at each pixel in the image

• peaks are the most distinguishable corners

cornerness score (Harris)

16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone

Lecture 13: Feature Tracking and Matching

Corner Detection $\bar{x} = \begin{bmatrix} u \\ v \end{bmatrix} \bigoplus G = \sum_{x \in W(\bar{x})} \nabla \mathcal{I}(x) \nabla \mathcal{I}(x)^{\mathsf{T}}$

- finding corners in images:
- Consider shifting window W by δ
 - How do the pixels in **W** change?
 - compare the windows using **sum of squared differences** (SSD) error:

$$\sum_{\boldsymbol{x} \in W(\bar{\boldsymbol{x}})} \| \mathcal{I}(\boldsymbol{x} + \boldsymbol{\delta}) - \mathcal{I}(\boldsymbol{x}) \|^2$$

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner":

significant change in all directions, i.e., even the minimum change is large

"Cornerness" Scores

Calling λ_1 and λ_2 the eigenvalues of the matrix **G**

 $S(\boldsymbol{G}) = \lambda_{\min}(\boldsymbol{G})$

Shi-Tomasi corner detector

$$C(\boldsymbol{G}) = \det(\boldsymbol{G}) - k \operatorname{tr}(\boldsymbol{G})^2$$

Harris corner detector

Today

- Feature Detection
- Feature Tracking
- Feature Matching

Chapter 4 Image Primitives and Correspondence

Correspondences

given a corner in image I_1 (and its neighborhood), how can we find <u>corresponding</u> pixel in I_2 ?

- Feature tracking (~ optical flow)
- Feature matching (descriptor-based)

Feature Tracking

Computing the corresponding pixel (x_2) is the same as computing the displacement $oldsymbol{\delta}$

$$oldsymbol{x}_2 = oldsymbol{x}_1 + oldsymbol{\delta}$$

(translational motion model)

Feature Tracking

Computing the corresponding pixel (x_2) is the same as computing the displacement $oldsymbol{\delta}$

$$\min_{\boldsymbol{\delta}} \sum_{\boldsymbol{y} \in W(\boldsymbol{x}_1)} \| \mathcal{I}_1(\boldsymbol{y}) - \mathcal{I}_2(\boldsymbol{y} + \boldsymbol{\delta}) \|^2$$

(translational motion model)

Feature Tracking

$$\min_{\boldsymbol{A},\boldsymbol{\delta}} \sum_{\boldsymbol{y} \in W(\boldsymbol{x}_1)} \| \mathcal{I}_1(\boldsymbol{y}) - \mathcal{I}_2(\boldsymbol{A}\boldsymbol{y} + \boldsymbol{\delta}) \|^2$$

(affine motion model)

Hidden Assumptions

Pixel motion models not valid in presence of occlusions

Hidden Assumptions

Matching image patches assume that the brightness does not change due to viewpoint changes (brightness constancy constraints)

True for Lambertian surfaces

Today

- Feature Detection
- Feature Tracking
- Feature Matching

Chapter 4 Image Primitives and Correspondence

Descriptor-based Feature Matching

Feature tracking does not typically work for large changes of viewpoint (**large baseline**)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Descriptor is a signature we attach to a (point) feature, that describes local appearance

Ideal Properties of a Detector/Descriptor

Rotation invariance

(more generally: Viewpoint invariance)

Illumination invariance

Scale invariance

(more in the Lab 5 handouts: repeatability, efficiency ..)

Example: SIFT Descriptor (1/2)

SIFT: Scale-Invariant Feature Transform

- Take 16x16 square window around detected feature
- Compute gradient orientation and magnitude for each pixel
- Create histogram of gradients weighted by magnitude
- Peak is orientation of feature

© Dr. Mubarak Shah. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Lowe, David G. (1999). "Object recognition from local scale-invariant features", CVPR'99

D. G. Lowe, "Object recognition from local scale-invariant features," Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999, pp. 1150-1157 vol.2, doi: 10.1109/ICCV.1999.790410 © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Example: SIFT Descriptor (2/2)

How to get SIFT descriptor?

- Transform all gradients with respect to (main) orientation
- Split window in 16 squares and for each compute a histogram with 8 sectors
- Stack histogram into a descriptor vector of 16 x 8 = 128 scalars
- Normalize to have norm = 1

Image gradients

Keypoint descriptor

Lowe, David G. (1999). "Object recognition from local scale-invariant features", CVPR'99

D. G. Lowe, "Object recognition from local scale-invariant features," Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999, pp. 1150-1157 vol.2, doi: 10.1109/ICCV.1999.790410 © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Feature Matching

- For each descriptor in *I*¹ find closest descriptor in *I*² (nearest neighbor)
- Speed up with approximate nearest neighbor algorithms (FLANN library)

Are Harris Corners Scale invariant?

Other detectors have been proposed:
buge literature:

huge literature: SIFT, SURF, ORB, BRIEF, MSER, ...

• blob detectors:

process the image at different scales

https://www.youtube.com/watch?time_continue=3964&v=NPcMS49V5hg

Zebras, Horsefly, and Optical Flow

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

https://www.theatlantic.com/science/archive/2019/02/ why-do-zebras-have-stripes-flies/583114/

But still controversial: <u>https://www.cnn.com/2020/08/18/</u> world/zebra-stripes-fly-bites-study-trnd-scn/index.html