
16.485: Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

Lecture 12-13: Feature Detection and Tracking
Lecturer: Luca Carlone Scribes: -

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor(s).

This lecture discusses how to:

• extract point features in an image,

• track features across two images, and

• perform descriptor-based feature matching (we mainly provide pointers).

The presentation mostly follows Chapter 4 in [4].

-1.1 Corner detection

Consider a pixel x̄ = [u, v]T in an image and call W (x̄) a rectangular window of given size centered at x̄.
Moreover, call I(x̄) the intensity at pixel x̄. Then, x̄ is a good “corner”, if shifting the window W (x̄) in
any direction δ = [δu δv]

T produces a new window W (x̄+ δ) which is different from W (x̄). Mathematically,
a good corner is such that:

min
‖δ‖=ε

∑
x∈W (x̄)

‖I(x+ δ)− I(x)‖2 > 0 (and possibly as large as possible) (-1.1)

since if the minimum is zero, then there is a direction δ 6= 0 (we constrain ‖δ‖ = ε, for some small scalar
ε > 0) that does not cause any change of appearance.

For a small displacement δ, we can take a first-order Taylor expansion of the cost and write:

min
‖δ‖=ε

∑
x∈W (x̄)

‖I(x) +∇I(x)Tδ − I(x)‖2 = min
‖δ‖=ε

∑
x∈W (x̄)

‖∇I(x)Tδ‖2 = (-1.2)

min
‖δ‖=ε

∑
x∈W (x̄)

δT
(
∇I(x)∇I(x)T

)
δ = min

‖δ‖=ε
δT

 ∑
x∈W (x̄)

∇I(x)∇I(x)T

 δ (-1.3)

where ∇I(x) ∈ R2×1 is the gradient of the intensity function I(·) at x (see also paragraph about “Image
Gradients” below for practical considerations). Let us now define:

G =
∑

x∈W (x̄)

∇I(x)∇I(x)T ∈ R2×2 (-1.4)

Then, since δ is a vector of magnitude ε, we write it as δ = εd where d is a unit-norm vector. Substituting
δ = εd and the definition of G in (-1.2) we get:

min
‖δ‖=ε

δTGδ = min
‖d‖=1

ε2dTGd = ε2 λmin(G) (-1.5)

-1-1



-1-2 Lecture 12-13: Feature Detection and Tracking

where λmin(G) is the smallest eigenvalue of G (if you do not understand how we get the smallest eigenvalue
from the minimization, read this: https://en.wikipedia.org/wiki/Rayleigh_quotient).

It is clear that minδ δ
TGδ is nonzero (for a nonzero δ) if and only if G is positive definite. Moreover,

the larger the eigenvalues of G, the larger the minimum. Therefore, a pixel x̄ is a good corner, if the
corresponding matrix G exhibits large eigenvalues.

Different corner detectors use different scores to quantify how “large” the eigenvalues of G are. The popular
Harris corner detector uses the following quantity (for a given small scalar k)

C(G) = det(G)− k tr (G)
2

(Harris corner score) (-1.6)

to score the quality (or “cornerness”) of a pixel [2].

Another popular choice of the cornerness score is simply:

S(G) = λmin(G) (Shi-Tomasi score) (-1.7)

and has been proposed by Shi and Tomasi in [5].

An intuitive explanation of the Harris corner score Calling λ1 and λ2 the two eigenvalues of G and
recalling that det(G) = λ1λ2 and tr (G) = λ1 + λ2, the Harris corner score can be rewritten as:

C(G) = λ1λ2 − kλ2
1 − kλ2

2 − 2kλ1λ2 = (1− 2k)λ1λ2 − k(λ2
1 + λ2

2) (-1.8)

Since k is typically small, it is clear that when λ1, λ2 are small, the corner score will be small, consistently
with what we expect.

Now consider the case in which λ1 � λ2. In this case we can write:

C(G) = (1− 2k)λ1λ2 − k(λ2
1 + λ2

2) ≈ −kλ2
1 (-1.9)

and the score becomes negative. This is the case in which we have an edge, rather than a corner.

Finally, consider the case in which λ1 ≈ λ2 � 0:

C(G) = (1− 2k)λ1λ2 − k(λ2
1 + λ2

2) ≈ (1− 2k)λ2
1 − 2kλ2

1 = (1− 4k)λ2
1 (-1.10)

which is large, since we assumed λ1 � 0 and small k. Therefore, the score rewards large eigenvalues of G
when they have similar magnitude.

Image gradients When taking the Taylor expansion in (-1.2) we treated the intensity as a continuous
function over the pixel domain, and adopted the standard definition of gradient (that we assume to be a
column vector):

∇I(x) = ∇I(u, v) =

[
∂I(u,v)
∂u

∂I(u,v)
∂v

]
(-1.11)

However, in practice the image if formed by discrete pixels, and the notion of derivative needs be replaced
by a discrete counterpart. A common choice is to use finite differences:

∇I(x) = ∇I(u, v) ≈

[
I(u+h,v)−I(u,v)

h
I(u,v+h)−I(u,v)

h

]
(-1.12)

If you want to learn more about alternative choices, please take a look at [4, p. 99].

https://en.wikipedia.org/wiki/Rayleigh_quotient


Lecture 12-13: Feature Detection and Tracking -1-3

-1.2 Feature Tracking

Assume we extracted N corner features from an image I1. Consider one of such corner features at pixel
position x1 and call p the 3D point which projects to x1. The question we answer in this section is: given a
second (temporally continuous) image I2, compute the pixel projection of p in I2, namely x2. Note that in
this problem we are only given the images I1 and I2 and the pixel x1 so we cannot use standard perspective
projection to compute x2 (e.g., the coordinates of p, and the intrinsic and extrinsic parameters of the cameras
picturing I1 and I2 are unknown).

Another way to look at the problem is to think that the camera is moving between the capture of image
I1 and I2, and we want to compute the corresponding displacement of the pixel x1 induced by the camera
motion. Therefore, computing x2 is the same as tracking the motion δ = [δu, δv]

T of pixel x1 between image
I1 and I2:

x2 = x1 + δ (-1.13)

Since we do not have any geometric information, our only hope is to compute the motion δ by comparing
pixel intensities in the two images. More specifically, if we build a rectangular window W (x1) collecting a
set of pixels around pixel x1 in I1, we can try to compute x2 by looking for a patch in I2 whose appearance
is similar to W (x1).1 Reasoning in terms of pixel displacement δ, this is equivalent to computing:

min
δ

∑
y∈W (x1)

‖I1(y)− I2(y + δ)‖2 (-1.14)

Figure -1.1: The goal of feature tracking is to compute the displacement of a given pixel x1 (displacement
shown as yellow arrow) between two images, due to the camera motion.

However, the minimization (-1.14) already took a strong assumption: every pixel in W (x1) is moving by the
same amount δ. Unfortunately, this assumption, typically referred to as a translational motion model [4,
Section 4.2.1], is only true if W (x1) is picturing a flat surface parallel to the image and the camera is moving
parallel to it. This justifies the use of a more general deformation model, which assumes a more complex
mapping of the pixels:

min
A,δ

∑
y∈W (x1)

‖I1(y)− I2(Ay + δ)‖2 (-1.15)

1Note: this assumes that the illumination changes due to the motion of the camera are small, an assumption known as
“brightness constancy” constraint.



-1-4 Lecture 12-13: Feature Detection and Tracking

which assumes an affine (pixel) motion model for the pixels in the window W (x1). This model is a good
approximation for small planar patches parallel to the image plane and undergoing small rotations [4, Section
4.2.1]. In order to compute the optimal displacement δ, we can take a Taylor expansion around the point
A = I2 and δ = 02 of the intensity I2(Ay + δ) (thought as a function over a continuous pixel space):

I2(Ay + δ) ≈ I2(y) +∇I2(y)T[(A− I2)y + δ] (-1.16)

which after substituting back into (-1.15) leads to a linear least squares model:

min
A,δ

∑
y∈W (x1)

‖I1(y)− I2(y)−∇I2(y)T[(A− I2)y + δ]‖2 (-1.17)

from which one can compute A and δ in closed form.

In oder to get some more insight, let us go back to the purely translational deformation model, whose Taylor
expansion gives:

I2(y + δ) ≈ I2(y) +∇I2(y)Tδ (-1.18)

After substituting (-1.18) back into (-1.15) we obtain:

min
δ

∑
y∈W (x1)

‖I1(y)− I2(y)−∇I2(y)Tδ‖2 (-1.19)

whose solution can be computed using linear least squares as:

δ? =

 ∑
y∈W (x1)

∇I2(y)∇I2(y)T

−1 ∑
y∈W (x1)

∇I2(y)(I1(y)− I2(y)) (-1.20)

Note that the matrix to be inverted is the same as theG we computed to extract good corners in the previous
section. Therefore, by construction, good corners are such that the matrix in (-1.20) is invertible.

-1.3 Descriptor-based Feature Matching

Feature tracking typically works well if the images are not very different (e.g., collected by the same camera
at consecutive time instants). However, feature tracking does not work well when the images are taken
by radically different viewpoints. In these case, a Descriptor-based Feature Matching is typically preferred,
where for each keypoint, one computes a descriptor vector. The descriptor can be understood as a unique
“signature” of the feature.

Therefore, descriptor-based feature matching works as follows:

• given images I1 and I2, it computes corners in both images as well as the corresponding descriptors
for each corner;

• it matches corners in the two images if the corresponding descriptors are close enough (note: each
descriptor is simply a large vector)

Many of these descriptors also come with a feature detector, which is typically a more sophisticated version
of the Harris corners we saw earlier in this document. However, it is also common to attach detectors to
Harris or Shi-Tomasi corners.

Common detector-descriptors are:



Lecture 12-13: Feature Detection and Tracking -1-5

• SIFT [3]: https://docs.opencv.org/3.4.3/da/df5/tutorial_py_sift_intro.html (this nice video
provides an in-depth explanation: https://www.youtube.com/watch?time_continue=3964&v=NPcMS49V5hg)

• SURF [1]: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/
py_surf_intro.html

• ORB: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html

All these (and more) are available in OpenCV, the most popular library for computer vision.

References

[1] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: speeded up robust features. In European Conf. on Computer
Vision (ECCV), 2006.

[2] C. Harris and M. Stephens. A combined corner and edge detector. Proceedings of the 4th Alvey Vision
Conference, pages 147–151, August 1988.

[3] D.G. Lowe. Distinctive image features from scale-invariant keypoints. Intl. J. of Computer Vision,
60(2):91–110, 2004.

[4] Y. Ma, S. Soatto, J. Kosecka, and S.S. Sastry. An Invitation to 3-D Vision. Springer, 2004.

[5] J. Shi and C. Tomasi. Good features to track. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 593–600, 1994.

https://docs.opencv.org/3.4.3/da/df5/tutorial_py_sift_intro.html
https://www.youtube.com/watch?time_continue=3964&v=NPcMS49V5hg
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html

	Corner detection
	Feature Tracking
	Descriptor-based Feature Matching

