
16.485: Visual Navigation for Autonomous Vehicles (VNAV) Fall 2021

Lecture 14: 2-view Geometry
Lecturer: Luca Carlone Scribes: -

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor(s).

This lecture discusses:

• basic principles of 2-view geometry for calibrated cameras (Epipolar constraint, Essential matrix),

• how to compute the essential matrix from pixel correspondences in 2 camera images,

• how to estimate the relative pose (up to scale) between the two cameras from the Essential matrix.

The presentation mostly follows Chapter 5 in [1, Sections 5.1-5.3].

14.1 Epipolar constraint and Essential matrix

From Lecture 12, we know how to compute keypoint correspondences in two images using feature tracking
or descriptor-based feature matching. In other words, given a pixel x1 in image I1, we are able to compute
the corresponding pixel x2 in image I2 (assuming the two images are picturing the same scene). Note that
“corresponding pixels” refers to the fact that the two pixels picture the same 3D point.

In this lecture our goal is to compute the geometry of the two cameras taking images I1 and I2 (i.e., the
relative pose between the cameras) given a number of pixel correspondences. Towards this goal, we take two
main assumptions:

• the pixel correspondences are correct, i.e., for every correspondence (x1,x2), the two pixels do represent
the same 3D point. We will relax this assumption during the next lecture, since in practice many of
the correspondences may be wrong. We also assume that the 3D point does not move.

• the cameras are calibrated, i.e., the calibration matrices:

K1 =

 sx1 f1 sθ1f1 ox1

0 sy1 f1 oy1
0 0 1

 K2 =

 sx2 f2 sθ2f2 ox2

0 sy2 f2 oy2
0 0 1

 (14.1)

of each camera is known. This is an acceptable assumption in robotics, where we can typically calibrate
the cameras on our robots and compute K1 and K2 before deployment (note: for a mobile robot
K1 = K2, i.e., both images are collected by the same camera at different time instants).

The perspective projection of the 3D point pw to the two cameras (Fig. 14.1) can be written as:

pc1z x̃1 = K1 [Rc1
w tc1w ] p̃w pc2z x̃2 = K2 [Rc2

w tc2w ] p̃w (14.2)

where (Rci
w tciw ) is the (inverse of) the pose of the camera i in the world frame, pciz is the depth of the point

with respect to camera i, and p̃w contains the point coordinates with respect to the world frame (note:
homogeneous coordinates).

14-1



14-2 Lecture 14: 2-view Geometry

Figure 14.1: 2-view geometry.

Since the point is unknown anyway and we only attempt to compute the relative pose between the two
cameras, we may simply assume that c1 is the w frame, which allows simplifying the expressions above as:

d1x̃1 = K1[I3 03]p̃c1 = K1p
c1 d2x̃2 = K2[Rc2

c1 tc2c1 ]p̃c1 (14.3)

where to simplify the notation we also defined d1 = pc1z and d2 = pc2z .

Since the calibration matrices are known, we can pre-multiply both members of the equation on the left by
K−11 and both members of the equation on the right by K−12 :

d1ỹ1 = pc1 d2ỹ2 = Rc2
c1p

c1 + tc2c1 (14.4)

where ỹ1 = K−11 x̃1 and ỹ2 = K−12 x̃2 (both still expressed in homogeneous coordinates). ỹ1 and ỹ2 are
often called “calibrated” pixel coordinates.

Substituting pc1 from the expression on the left to the right one:

d2ỹ2 = d1R
c2
c1 ỹ1 + tc2c1 (14.5)

To simplify notation further, we drop the super- and subscripts for the rotation and translation and write t
(instead of tc2c1) and R (instead of Rc2

c1). This should not cause confusion since these are the only translation
and rotation we are going to deal with in this lecture. Therefore, (14.5) becomes:

d2ỹ2 = d1Rỹ1 + t (14.6)

Premultiplying both members by [t]×:

d2[t]×ỹ2 = d1[t]×Rỹ1 (14.7)



Lecture 14: 2-view Geometry 14-3

where we noticed that [t]×t = 03. Pre-multiplying both members by ỹT
2 :

d2ỹ
T
2 [t]×ỹ2 = d1ỹ

T
2 [t]×Rỹ1 (14.8)

However, ỹT
2 [t]×ỹ2 = 03 (since [t]×ỹ2 is orthogonal to ỹ2). Therefore:

d1ỹ
T
2 [t]×Rỹ1 = 0 (14.9)

Since d1 is non-zero, this leads to the Epipolar constraint :

ỹT
2 [t]×R ỹ1 = 0 (14.10)

which relates corresponding pixels in two images. The matrix

E = [t]×R (14.11)

is known as the Essential matrix.

Definitions:

• epipolar plane: plane passing through the optical centers and the point p

• epipoles: intersection between the segment connecting the optical centers and the image planes

• epipolar line: line corresponding to the set of pixels ỹ2 in the second image that satisfy the epipolar
constraint for a given pixel ỹ1 in the first image.

Geometric interpretation. The epipolar constraint can be written as (see slide 12):

(tc2c1 × ỹ2) ⊥ (Rc2
c1 ỹ1) ⇐⇒ (tc2c1 × ỹ2)TRc2

c1 ỹ1 = 0 ⇐⇒ ([tc2c1 ]×ỹ2)TRc2
c1 ỹ1 = 0 ⇐⇒ ỹT

2 [tc2c1 ]×R
c2
c1 ỹ1 = 0

Stereo example (slide 14):

ỹT
2 [t]×Rỹ1 = 0 ⇐⇒ ỹT

2

 0 0 0
0 0 b
0 −b 0

 ỹ1 = 0 ⇐⇒ ỹT
2

 0
b
−bv1

 = 0 ⇐⇒ bv2 − bv1 = 0 ⇐⇒ v2 = v1

Properties of the essential matrix:

• The epipolar constraint does not constrain the scale of the translation.

• A matrix is an essential matrix if and only if it has singular values {σ, σ, 0} (in particular σ = ‖t‖),
see Theorem 5.5 in [1].

Proof. We only prove that the largest eigenvalue of E = [t]×R is λmax(E) = ‖t‖2 and the smallest
eigenvalue is zero. A complete (but more involved) proof can be found in [1, Thm 5.5].

λmax(E) = max
‖d‖=1

‖Ed‖2 = max
‖d‖=1

dTETEd = max
‖d‖=1

dTRT[t]T×[t]×Rd (14.12)

= max
‖d‖=1

dT[t]T×[t]×d = max
‖d‖=1

‖[t]×d‖2 = max
‖d‖=1

‖t× d‖2 = ‖t‖2 (14.13)

λmin(E) = min
‖d‖=1

‖Ed‖2 = min
‖d‖=1

‖t× d‖2 = 0 (14.14)



14-4 Lecture 14: 2-view Geometry

• The space of the essential matrices is called the Essential space SE (i.e., the space of 3 × 3 matrices
that can be written as [t]×R for some R ∈ SO(3) and t ∈ R3). The projection of a matrix M onto
the Essential space can be computed as prescribed in [1, Thm 5.9]:

arg min
E∈SE

‖E −M‖2F = U

 λ1+λ2

2 0 0

0 λ1+λ2

2 0
0 0 0

V T (14.15)

where M = Udiag (λ1, λ2, λ3)V T is a singular value decomposition of M .

14.2 How to estimate the Camera Poses from Correspondences?

In this section we address the following problem: given N (calibrated) pixel correspondences, compute the
relative pose (up to scale) between the cameras. This is typically done in 2 steps, discussed below:

• use the pixel correspondences and the epipolar constraint to estimate the essential matrix E

• retrieve the relative pose (R, t) between the cameras from the essential matrix E

14.2.1 Compute the Essential Matrix from Pixel Correspondences

Assume that we are given N (calibrated) pixel correspondences (ỹ1,k, ỹ2,k) for k = 1, . . . , N . As men-
tioned at the beginning of this document, we assume that there is no outlier (i.e., we do not have wrong
correspondences). Each of these correspondences need to satisfy the epipolar constraint (14.10):

ỹT
2,k E ỹ1,k = 0 k = 1, . . . , N (14.16)

Noticing that (ỹ1,k, ỹ2,k) are known pixel values, we realize that these are simply linear equalities. Note that
the essential matrix can be only computed up to scale since we can multiply (14.17) by an arbitrary constant
without altering the equality. Recalling that E = [t]×R this means that we can apply an arbitrary scaling
to the vector t without altering the epipolar constraint. This is consistent with the geometric intuition
that from a set of camera images we are not able to resolve the scale of the scene, i.e., we are not able to
understand if we are observing a small scene from close distance of a large scene from a far distance.

Therefore, it is customary to assume ‖t‖ = 1, which means we only try to estimate the direction of the
translation rather than it’s scale.

Eight-point algorithm. In absence of noise, we can compute the essential matrix by solving a linear
system. Rearranging the entries of E in a vector e ∈ R9, the set of linear equations (14.17) can be written
as:

aT
ke = 0 k = 1, . . . , N (14.17)

where ak are known vectors whose entries are only function of the pixel correspondences (ỹ1,k, ỹ2,k).

Stacking the vectors aT
k as rows of a matrix A, the linear equations

Ae = 0 (14.18)

For this linear system to admit a unique solution, A ∈ RN×9 should have rank 8, therefore we need N = 8
point correspondences to compute the essential matrix using the linear system (14.18).



Lecture 14: 2-view Geometry 14-5

By solving the linear system (14.18) and re-arranging the entries of e into a 3 × 3 matrix, we obtain the
desired essential matrix.

Note that since Ae = −Ae = 0 both E and −E are valid solutions to the linear system (14.18), so we need
to consider both as potential essential matrices (we resolve this ambiguity in Section 14.2.2).

Noisy pixel measurements. Since the pixels measurements are typically affected by noise, the solution
of the linear system may not be an essential matrix. Therefore, it is common to project the solution onto
the essential space using (14.15).

How many correspondences do we really need to estimate E? The essential matrix E = [t]×R is
fully defined by a unit vector t (recall that we imposed ‖t‖ = 1) and a rotation R. Therefore, it only has 5
degrees of freedom. Since each correspondence adds a single linear equation, we conclude that we need at
least 5 points to estimate the essential matrix.

The eight-point algorithm uses more since it does not leverage the structure of the essential matrix (i.e., we
first estimate a generic 3× 3 matrix and then we project to the essential space).

Related work indeed provides 7-point, 6-point, and 5-point algorithms. The 5-point algorithm, developed by
Nister in [2], is a minimal solver.

14.2.2 Retrieve Pose (up to scale) from the Essential Matrix

Theorem 1 (Pose recovery from essential matrix, Thm 5.7 in [1]). There exist exactly two relative poses
(R, t) with R ∈ SO(3) and t ∈ R3 corresponding to a nonzero essential matrix E (i.e., such that E = [t]×R):

t1 = URz(+π/2)ΣUT R1 = URz(+π/2)V T (14.19)

t2 = URz(−π/2)ΣUT R2 = URz(−π/2)V T (14.20)

where E = UΣV T is the singular value decomposition of the matrix E, and Rz(+π/2) is an elementary
rotation around the z-axis of an angle π/2.

Using the matrices E and −E we computed in the previous section, we can use Theorem 1 to compute
the corresponding pose estimates. Since each essential matrix leads to 2 potential poses, we end up with 4
alternatives. Out of these 4 potential poses, we can find the correct one as follows:

• estimate the position of the 3D points producing the correspondences: all points must satisfy (14.5):

d2ỹ2 = d1Rỹ1 + t

from which we can compute d1 and d2. Note that due to the scale ambiguity (we assumed ‖t‖ = 1) d1
and d2 may be a “scaled” version of the true distance from the cameras to the point.

• select the pose for which the reconstructed 3D points are in front of both cameras (the so-called
cheirality constraint).

References

[1] Y. Ma, S. Soatto, J. Kosecka, and S.S. Sastry. An Invitation to 3-D Vision. Springer, 2004.

[2] D. Nistér. An efficient solution to the five-point relative pose problem. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2003.


	Epipolar constraint and Essential matrix
	How to estimate the Camera Poses from Correspondences?
	Compute the Essential Matrix from Pixel Correspondences
	Retrieve Pose (up to scale) from the Essential Matrix


