

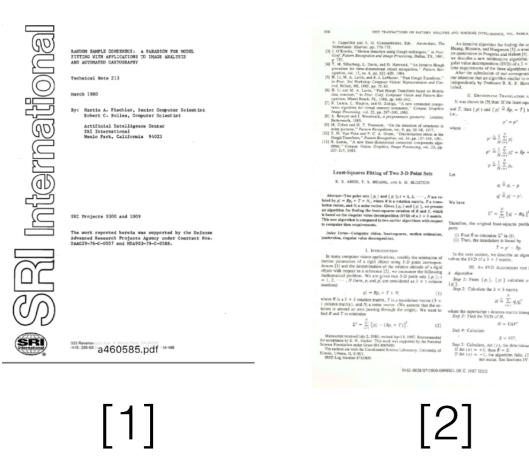
16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone

Lecture 15: RANSAC and 3D-3D correspondences

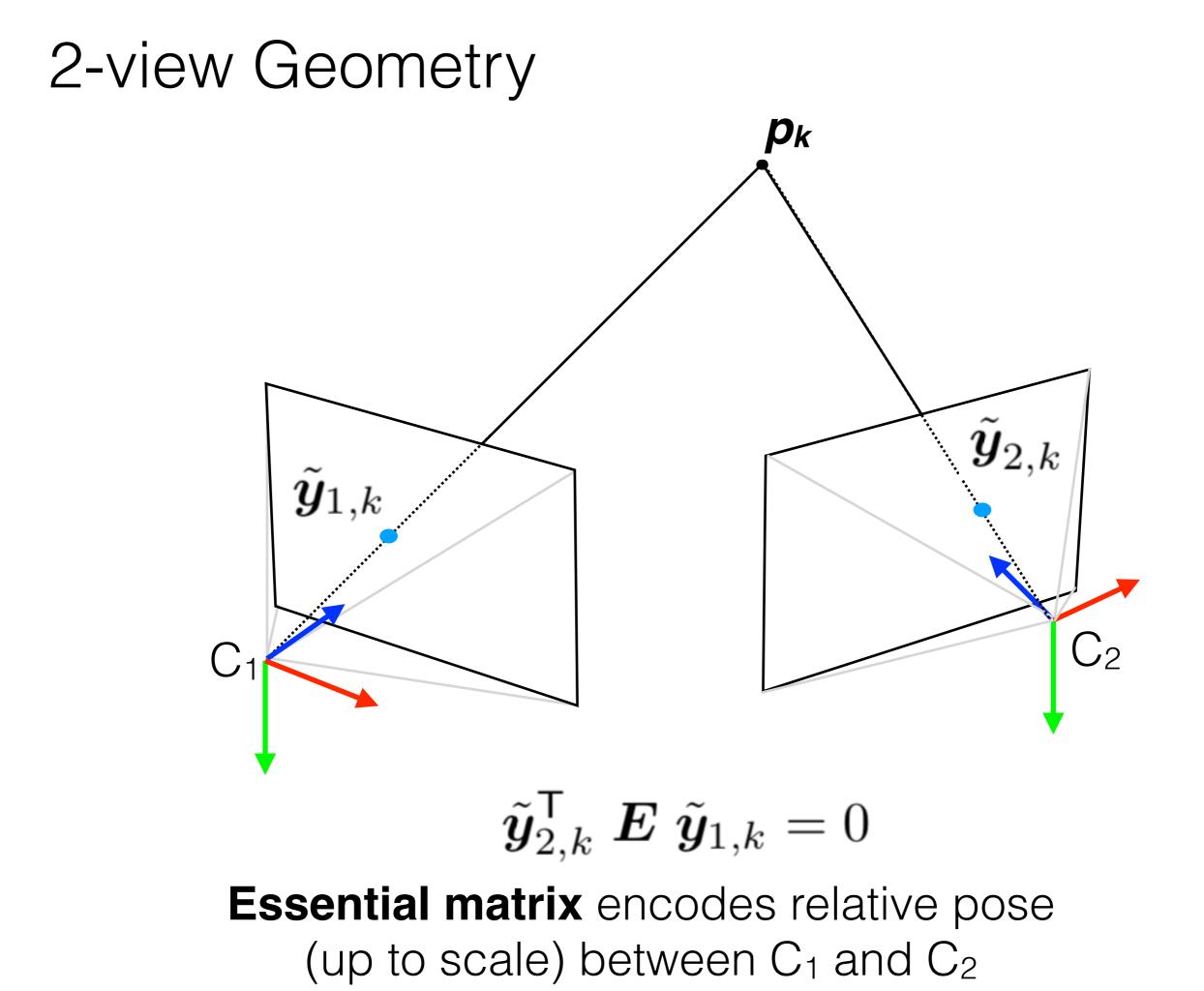
Today

- Recap on 2-view
- RANSAC
- 3D-3D correspondences

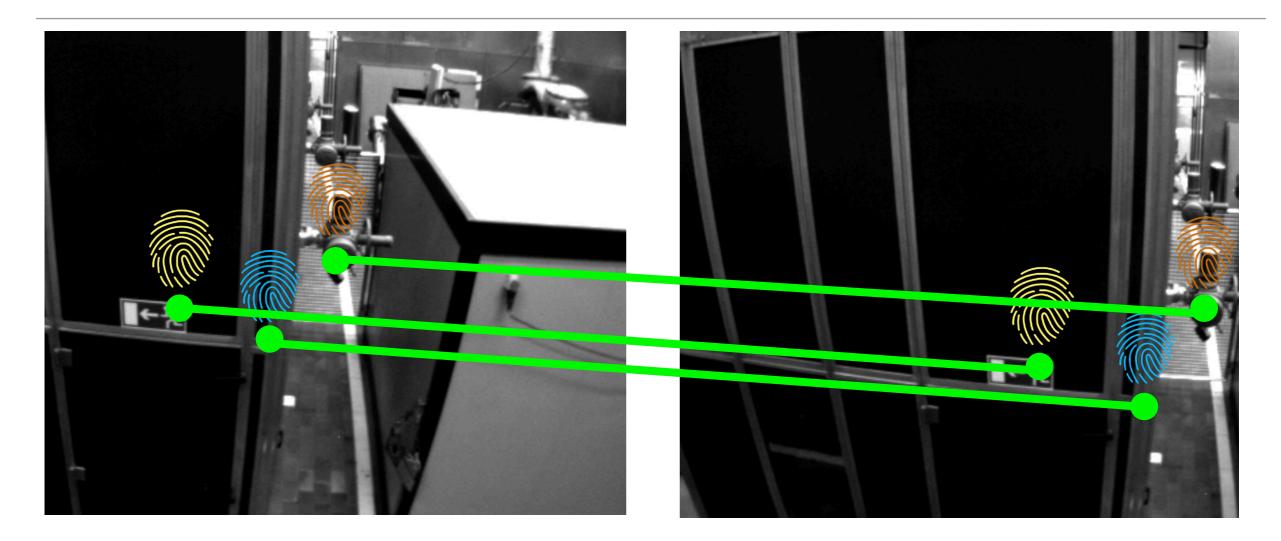


[1] M .Fisher, R. Bollets, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography", SRI Technical Note, 1980.

[2] K.S. Arun, T.S. Huang, S.D. Blostein, "Least-Squares Fitting of Two 3-D Point Sets", IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 9(5), 698-700, 1987.



2-view Geometry



Last week's assumptions:

- no wrong correspondences (outliers)
- 3D point is not moving
- camera calibration is known

Estimating Poses from Correspondences

Given *N* calibrated pixel correspondences:

$$(\tilde{y}_{1,k}, \tilde{y}_{2,k})$$
 for $k = 1, ..., N$

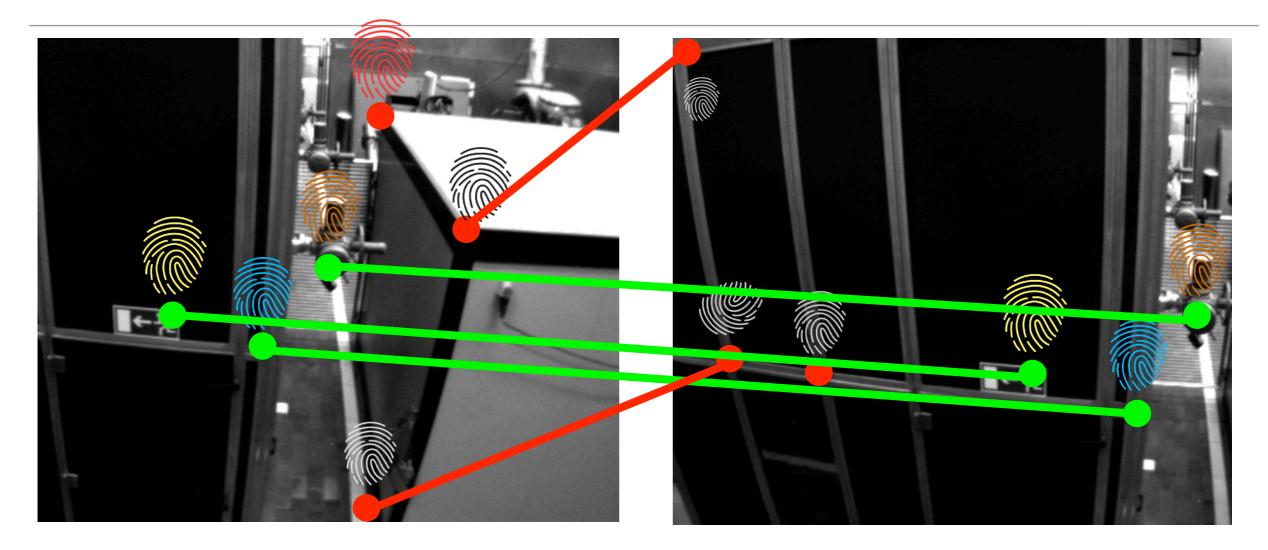
1. leverage the epipolar constraints to $\tilde{y}_{2,k}^{\mathsf{T}} \mathbf{E} \, \tilde{y}_{1,k} = 0$ estimate the essential matrix \mathbf{E}

For 8 points: Ae = 0 N>8 points: $\arg \min_{\|e\|=1} \|Ae\|^2$

 Retrieve the rotation and translation (up to scale) from the *E*

$$oldsymbol{E} = [oldsymbol{t}]_{ imes}oldsymbol{R}$$

2-view Geometry



In practice:

Many wrong correspondences (outliers)Some 3D points might be moving

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points $(n \le N)$

Basic idea:

1.sample *n* points
2.compute an estimate *P*' of *P*3.count how many other points agree with *P*'
4.repeat until you get a *P*' that agrees with many points

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)

Basic idea:

1.sample *n* points

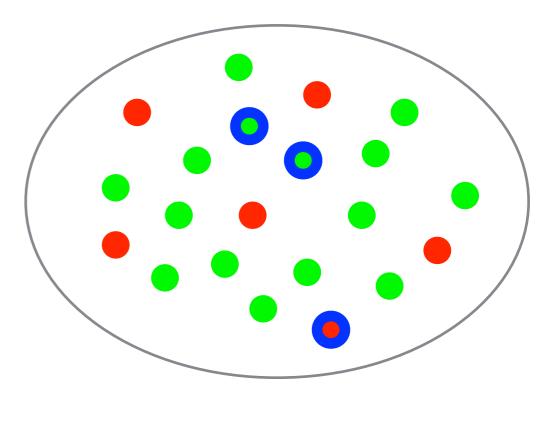
2.compute an estimate *P*' of *P*

3.count how many other points agree with P'

4. repeat until you get a P' that agrees with many points

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



P'

Basic idea:

1.sample *n* points

2.compute an estimate P' of P

3.count how many other points agree with *P*' 4.repeat until you get a *P*' that agrees with many points

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points $(n \le N)$

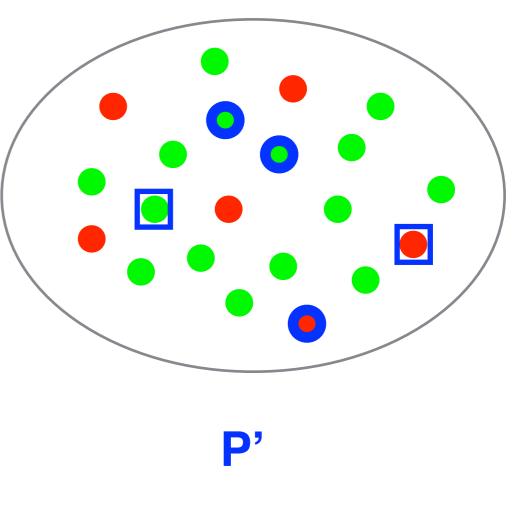
Basic idea:

1.sample n points

2.compute an estimate P' of P

3.count how many other points agree with P'

4. repeat until you get a P' that agrees with many points



Problem: estimate model *P* from N data points, possibly corrupted with outliers.

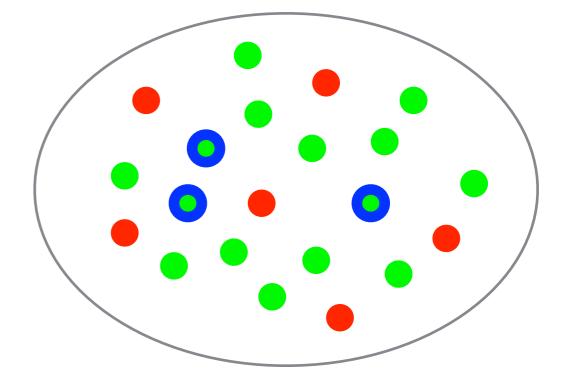
Assume: we have an algorithm to estimate *P* from *n* data points (n << N)

Basic idea:

1.sample *n* points
2.compute an estimate *P*' of *P*3.count how many other points agree with *P*'
4.repeat until you get a *P*' that agrees with many points

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



Basic idea:

1.sample *n* points

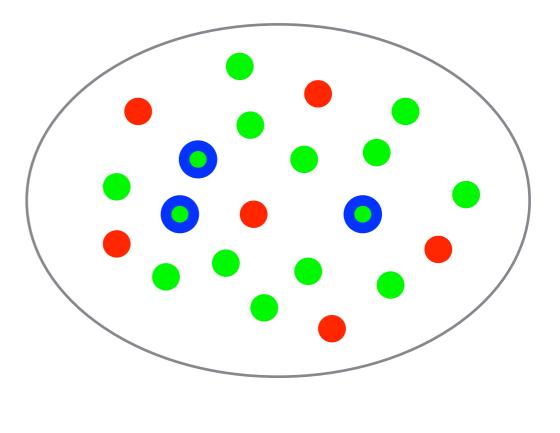
2.compute an estimate P' of P

3.count how many other points agree with P'

4. repeat until you get a P' that agrees with many points

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



P'

Basic idea:

1.sample *n* points

2.compute an estimate P' of P

3.count how many other points agree with *P*' 4.repeat until you get a *P*' that agrees with many points

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points $(n \le N)$

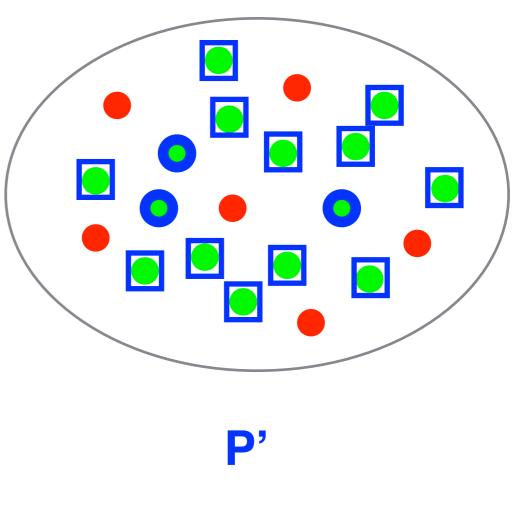
Basic idea:

1.sample n points

2.compute an estimate P' of P

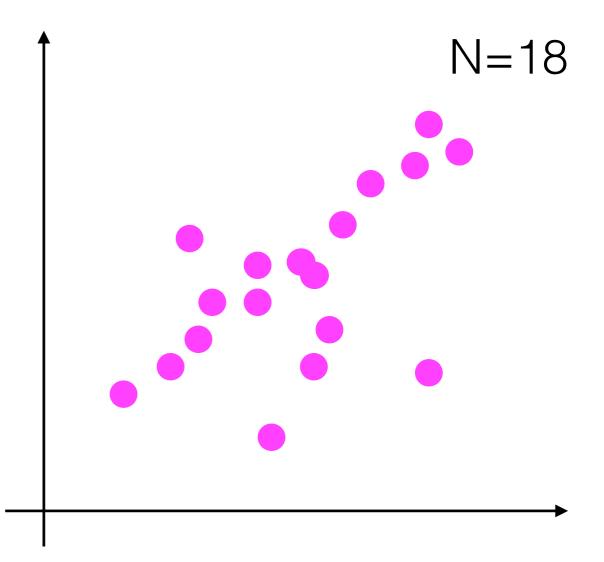
3.count how many other points agree with P'

4. repeat until you get a P' that agrees with many points



Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

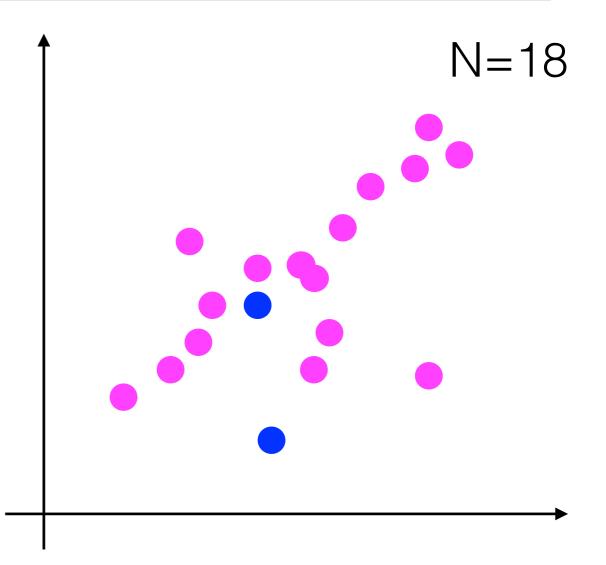


RANSAC:

1.sample 2 points
2.compute a line estimate P' of P
3.count how many points are within a tolerance from P'
4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points



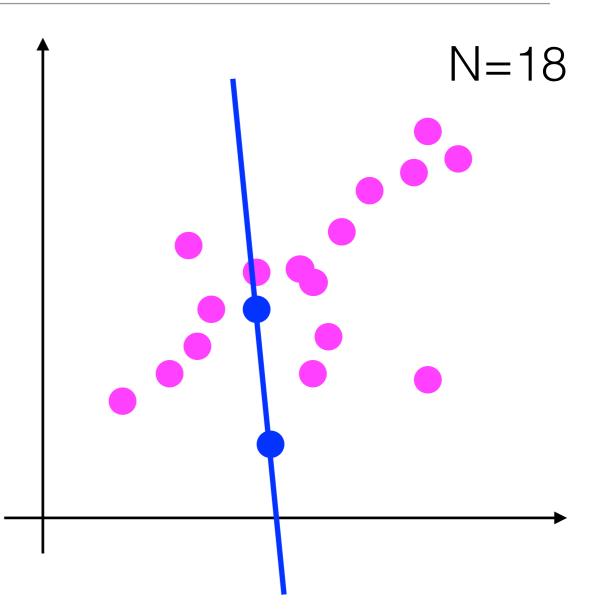
RANSAC:

1.sample 2 points

2.compute a line estimate P' of P3.count how many points are within a tolerance from P'4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points



RANSAC:

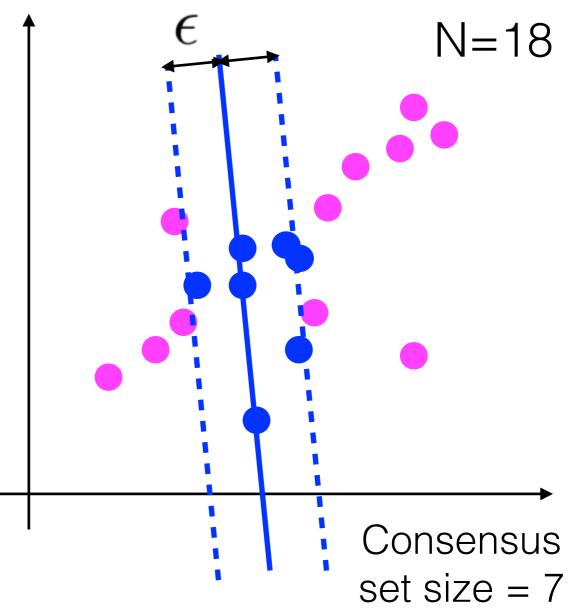
1.sample 2 points

2.compute a line estimate P' of P

3.count how many points are within a **tolerance** from *P*' 4.repeat until you get a *P*' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

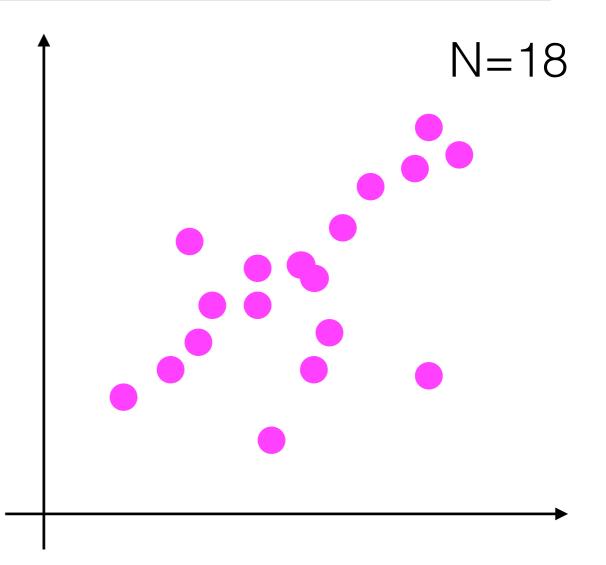


RANSAC:

1.sample 2 points
2.compute a line estimate P' of P
3.count how many points are within a tolerance from P'
4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

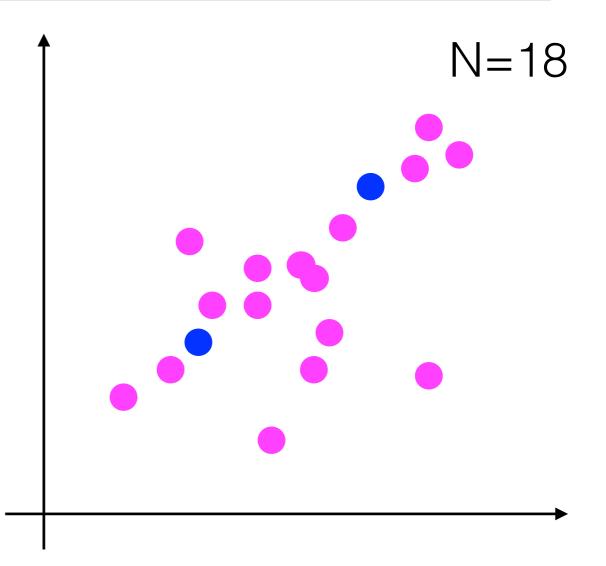


RANSAC:

1.sample 2 points
2.compute a line estimate P' of P
3.count how many points are within a tolerance from P'
4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points



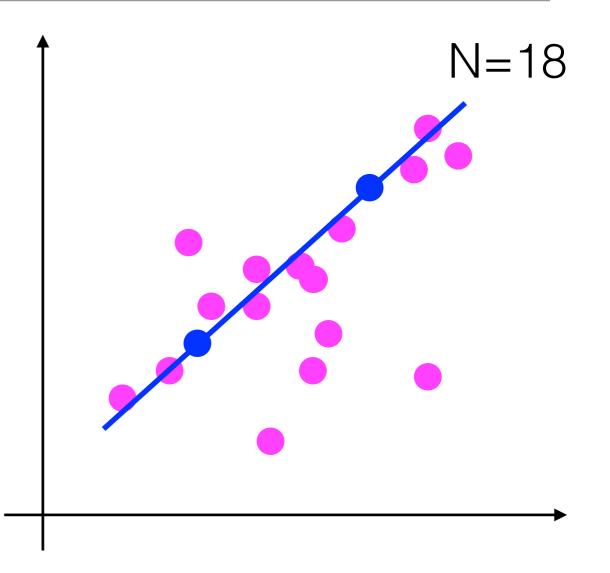
RANSAC:

1.sample 2 points

2.compute a line estimate P' of P3.count how many points are within a tolerance from P'4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points



RANSAC:

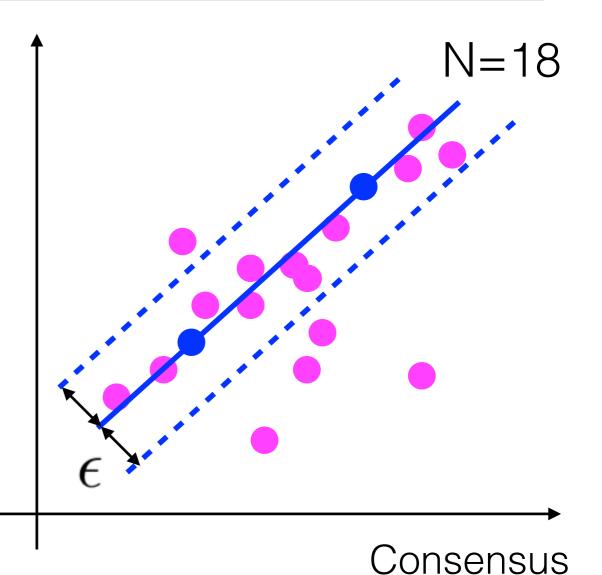
1.sample 2 points

2.compute a line estimate P' of P

3.count how many points are within a **tolerance** from *P*' 4.repeat until you get a *P*' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points



RANSAC:

1.sample 2 points 2.compute a line estimate P' of P 3.count how many points are within a **tolerance** from P' 4.repeat until you get a P' that agrees with many points

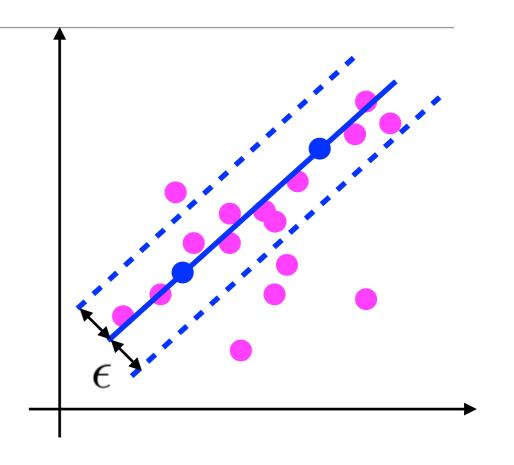
RANSAC: Parameter Tuning

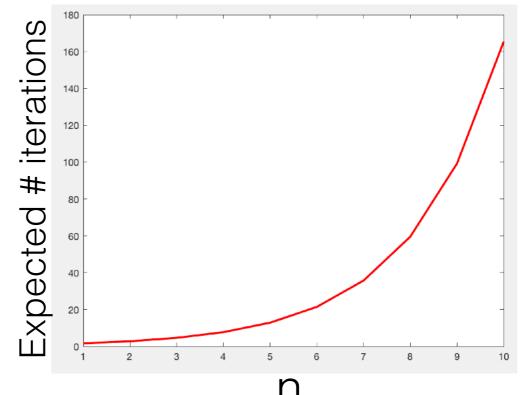
1. Error Tolerance ϵ : depends on the noise

2. Acceptable consensus set:

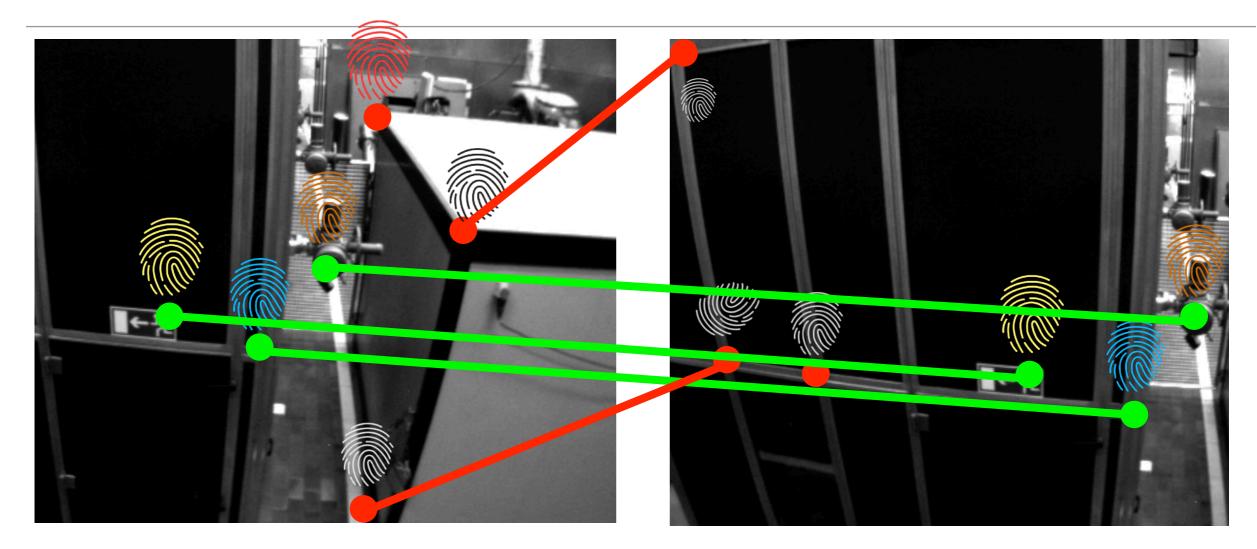
- from the paper: n+5
- rule of thumb: >50% of points

3. Maximum number of iterations





Example: RANSAC for Essential Matrix estimation

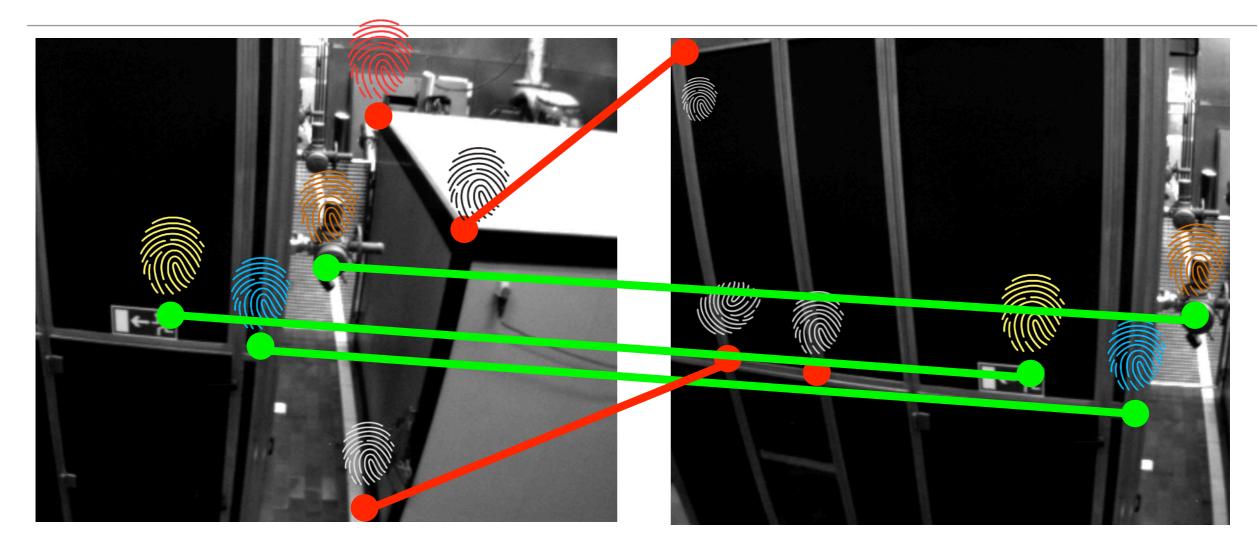


RANSAC:

1.sample *n* point correspondences

2.compute an estimate E' of the essential matrix E 3.count how many points are within a **tolerance** from E'4.repeat until you get a E' that agrees with many points

Example: RANSAC for Essential Matrix estimation

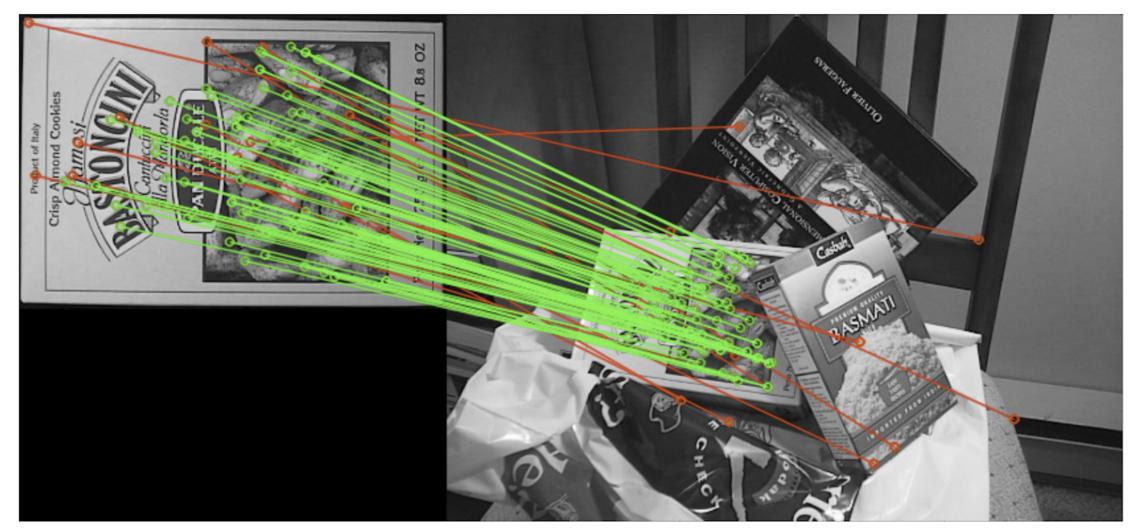


RANSAC

- essentially selects the set of inliers
- provides geometric verification for the correspondences

Beyond Motion Estimation

The tools we discussed (feature matching, essential matrix estimation, RANSAC) can be used also for **object detection** and localization

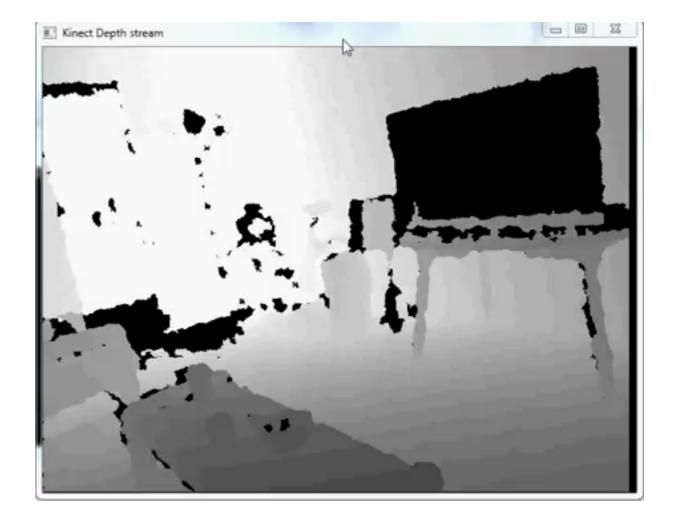


So far: pixel correspondences, a.k.a., **2D-2D correspondences**

3D-3D Point Correspondences

<section-header>

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

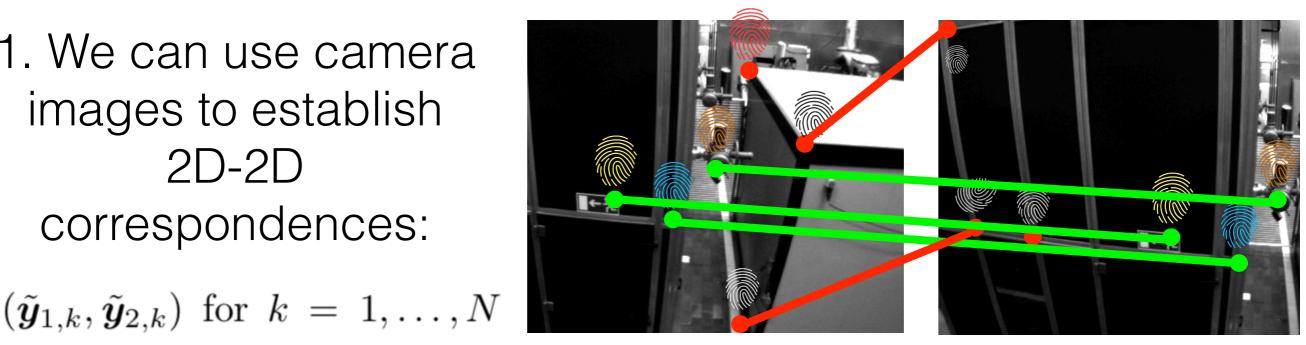


RGB-D cameras can measure depth (D) and image (RBG)

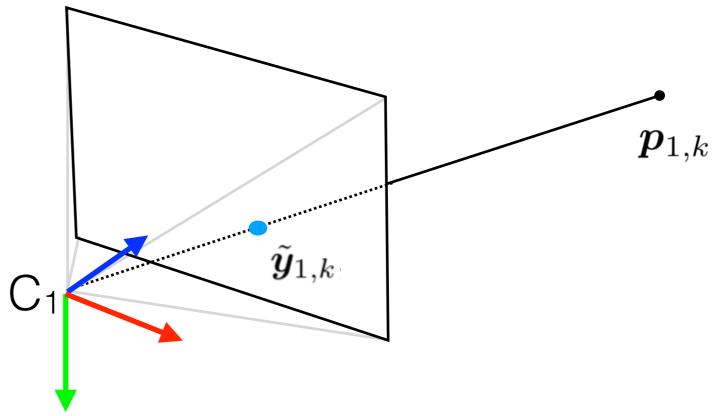
How can we use the depth information to estimate the relative pose between two RGB-D cameras observing the same scene?

3D-3D Point Correspondences

1. We can use camera images to establish 2D-2D correspondences:

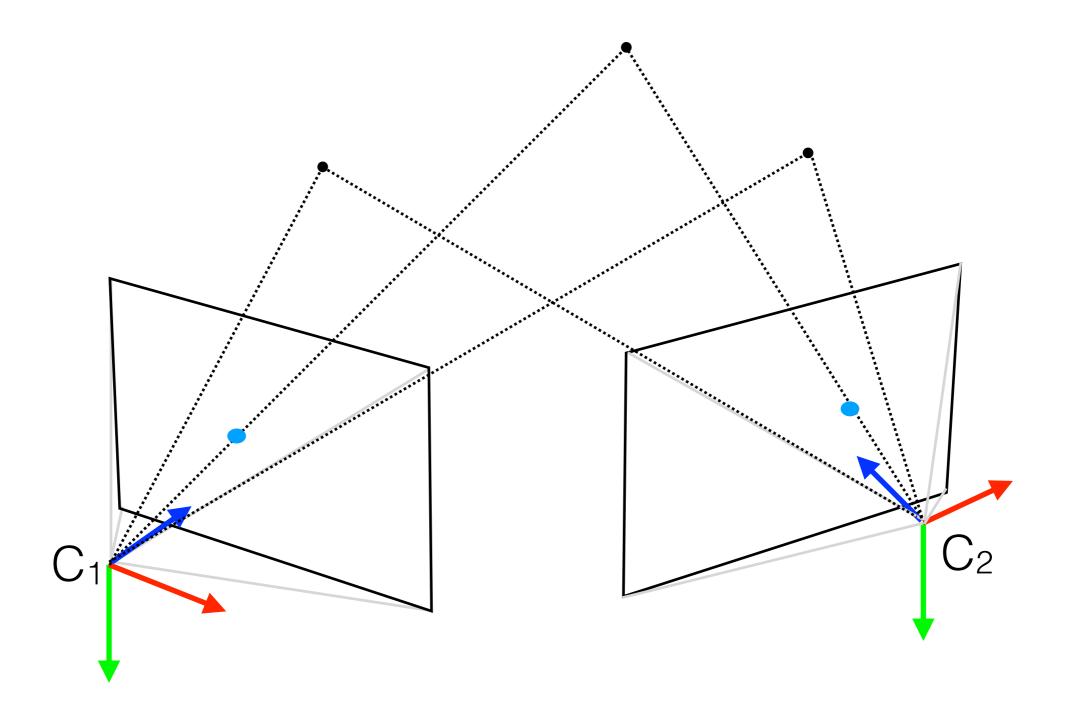


2. For each camera we can compute the set of 3D points corresponding to pixels



We obtain 3D-3D correspondences: $(p_{1,k}, p_{2,k}) k = 1, ..., N$

2-view Geometry from 3D-3D Correspondences



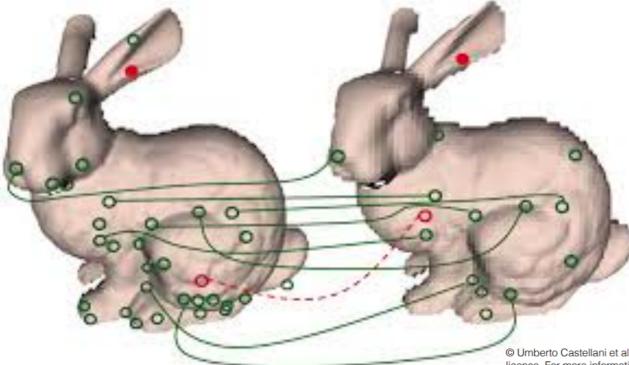
How to estimate the relative pose between the cameras from 3D-3D correspondences $(p_{1,k}, p_{2,k})$ with k = 1, ..., N ?

Few More Comments:

3 points are sufficient to compute the relative pose from 3D-3D correspondences

We can use the solver seen today as a 3-point minimal solver within a **RANSAC** method

Also useful for 3D objects localization:

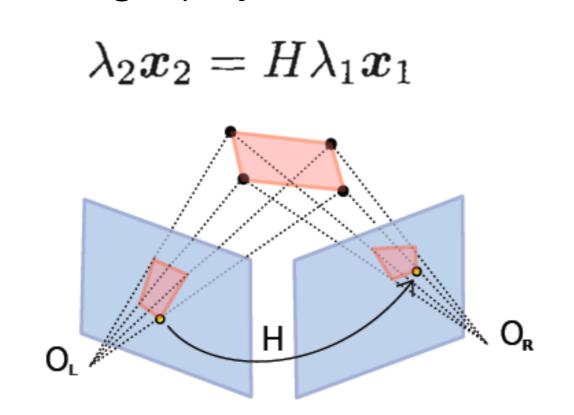


© Umberto Castellani et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

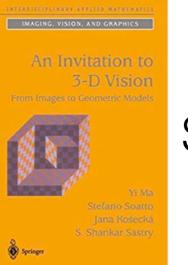
Other names: vector registration, point cloud alignment, ... 30

Backup

Other Matrices in 2-view Geometry



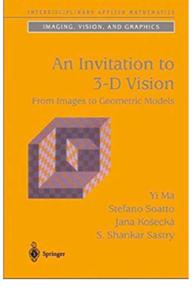
Homography matrix **H**



Section 5.3

Fundamental matrix **F**

$$oldsymbol{F} = oldsymbol{K}_2^{- op} ~~ [oldsymbol{t}]_{ imes} oldsymbol{R} ~~oldsymbol{K}_1^{-1}$$



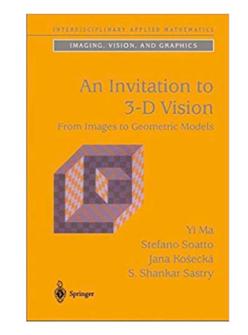
Chapter 6

Essential Matrix Properties

- A matrix is an essential matrix if and only if it has singular values $\{\sigma, \sigma, 0\}$
- The space of the essential matrices is called the *Essential space* S_E (i.e., the space of 3×3 matrices that can be written as $[t]_{\times}R$ for some $R \in SO(3)$ and $t \in \mathbb{R}^3$). The projection of a matrix M onto the Essential space can be computed as prescribed in [1, Thm 5.9]:

$$\underset{\boldsymbol{E}\in\mathcal{S}_{E}}{\arg\min} \|\boldsymbol{E}-\boldsymbol{M}\|_{F}^{2} = \boldsymbol{U} \begin{bmatrix} \frac{\lambda_{1}+\lambda_{2}}{2} & 0 & 0\\ 0 & \frac{\lambda_{1}+\lambda_{2}}{2} & 0\\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{V}^{\mathsf{T}}$$

where $\boldsymbol{M} = \boldsymbol{U} \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3) \boldsymbol{V}^{\mathsf{T}}$ is a singular value decomposition of \boldsymbol{M} .



[1]