16.485: VNAYV - Visual Navigation
for Autonomous Vehicles

Luca Carlone

U Lecture 16: From Optimization
To Estimation Theory and Back



Recap: 2-view Geometry from 3D-3D Correspondences

How to estimate the relative pose between the cameras
from 3D-3D correspondences (p; x,p2 ) With £ = 1,...,N ?
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Few More Comments:

3 points are sufficient to compute the relative pose
from 3D-3D correspondences

We can use the solver seen today as a 3-point
minimal solver within a RANSAC method

Also useful for 3D objects localization:

Other names: vector registration, point cloud alignment, ..



Today

e Optimization examples STATE
ESTIMATION
FOR ROBOTICS

e Estimation Basics
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Part |: Estimation Machinery
(more than what we need)



—xample 1a: Triangulation (Structure Reconstruction)

Compute 3D point p

from known poses
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Linear triangulation: || mhn HA;SWHQ
pv (=1



—xample 1b: Triangulation (Structure

Compute 3D point p

from known poses
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min ||z, — 7(RY, %, p")|? + |22 — 7(RY, t2,p")|
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Example 2a: Motion Estimation

Time 1 Time 2 Time 3
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Example 2b: Motion Estimation

Time 1 Time 2 Time 3
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Generalizes to K cameras: Bundle adjustment



Example 2b: Motion and Structure Estimation
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Generalizes to K cameras: Bundle adjustment



ructure from Motion

Original graph

180 cameras, 88723 points

458642 projections
active camera: 4
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[courtesy of F. Dellaert & Y-D. Yian]



Estimation Theory

Concerned with the estimation of unknown variables
given (noisy) measurements and prior information

Estimator: a function of the measurements that
approximates the unknown variables

Measurements that
depend on some unknown
variable Xx:

Estimator for x:

>

x* = F(z1,...,2N)

Zlyeeeys N
L ~T



Maximum Likelihood Estimation (MLE)

Assume we are given N measurements z1, ..., 2y (e.g., pixel measurements) that are function of a variable we

/

want to estimate @ (e.g., camera poses, points). Assume that we are also given the conditional distributions:

P (zj|z)
Than the maximum likelihood estimator (MLE) is defined as:
Measurement
IMLE =argmaX]P’(z1,...,zN|at) ||ke||hOOd

X

where P (zy,...,2zy|x) is also called the likelihood of the measurements given x. Equivalently:

ryvLE = argmin —logP (2, ..., zy|T) Negative
’ log-likelihood




Maximum Likelihood Estimation (MLE)

Assume we are given N measurements z1, ..., 2y (e.g., pixel measurements) that are function of a variable we
want to estimate x (e.g., camera poses, points). Assume that we are also given the conditional distributions:

P (z;|x)
Than the mazimum likelithood estimator (MLE) is defined as:
Measurement
:BMLE:a,rgmaxIP’(zl,...,zN|w) ||ke||hOOd
where P (21, ...,2zn|@) is also called the likelihood of the measurements given x. Equivalently:
ryvLE = argmin —logP (2, ..., zy|T) Negative
x log-likelihood
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Maximum a Posteriori Estimation (MAP)

Assume we are given N measurements z1,..., 2y (e.g., pixel measurements) that are function of a variable we

/

want to estimate x (e.g., camera poses, points). Mazimum a Posteriori Estimation (MAP) is a generalization
of MLE. Then the MAP estimator is:

argmax P (z1,...,zy|x) P (x)

€T

Measurement Priors
likelihood



Maximum a Posteriori Estimation (MAP)

Assume we are given N measurements z1,..., 2y (e.g., pixel measurements) that are function of a variable we

want to estimate x (e.g., camera poses, points). Mazimum a Posteriori Estimation (MAP) is a generalization
of MLE. Then the MAP estimator is:

yvap = argmax P (x|zq,...,2N)
r
Using Bayes rule:
xvap = argmax P (x|zy,...,2y) =
r
 P(z,..., zn|x) P (x)
arg max
x ]P)(Zl,...,ZN)

argmax P (z1,...,zy|x) P (x)

r

Measurement Priors
likelihood



Maximum a Posteriori Estimation (MAP)

Assume we are given N measurements z1,. .., 2y (e.g., pixel measurements) that are function of a variable we

want to estimate x (e.g., camera poses, points). Maximum a Posteriori Estimation (MAP) is a generalization

of MLE. Then the MAP estimator is:

yvap = argmax P (x|zy,...,2N)
€r
Using Bayes rule:
ryvap = argmax P (x|zy,...,2z2y) =
xr
| P(z,..., zn|x) P (x)
arg max
- P(zy,...,2n)
argmax P (z1,...,zy|x) P (x)
X

Measurement Priors
likelihood

Assuming independence between measurements:

N

TNMAP = argmin — Z logP(zj|x) — logP (x)




Optimization

Linear triangulation:

min || Ap™||°
DY ][=1

\ 4

Nonlinear triangulation:

min ||z, — w(RY, £, p") |2 +
pW
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+ |2 — m(RE, 2, ™)




