
16.485: Visual Navigation for Autonomous Vehicles (VNAV) Fall 2021

Lecture 17-18: Least Squares Optimization
Instructor: Luca Carlone Scribe: Alan Papalia

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publica-
tions. They may be distributed outside this class only with the permission of the Instructor(s).

This lecture centers around unconstrained least-squares optimization and primarily discusses:

• relevant background in unconstrained linear least-squares optimization;

• relevant background in unconstrained nonlinear least-squares optimization;

• the Gauss-Newton method for unconstrained nonlinear least-squares optimization;

• the Levenberg-Marquardt method for unconstrained nonlinear least-squares optimization.

As a reminder, our original motivation for performing nonlinear least-squares is to perform state
estimation through maximum likelihood or maximum a posteriori estimation with nonlinear sensor
models. Section 2.5 of [1] is an excellent reference for more information on the topics covered in
these notes.

Important: While we will briefly mention constraints in Section 18.1, throughout the remainder
of this document we will focus on unconstrained optimization. Unless specifically mentioned, the
concepts and algorithms in this document will only apply to unconstrained optimization.

18.1 Preliminaries: Minima and Convexity

Consider the following class of optimization problems:

min
x∈Rn

f(x)

subject to hi(x) ≤ bi, i = 1, . . . ,m
(1)

where f(x) : Rn 7→ R is the objective function (or cost) we seek to minimize, and hi(x) ≤ bi defines
the problem constraints.1 If a given value of x satisfies all constraints then it is referred to as a
feasible point. We refer to the set of all values of x that satisfy the constraints as the feasible set
of the optimization problem. That is, the feasible set is Ω , {x | hi(x) ≤ bi, i = 1, . . . ,m}.
A feasible point that attains the minimum of the cost f(x) is called an optimal solution or global
minimum (more about this in the following section).

18.1.1 Minima

Global minima are feasible points such that there are no other feasible points with a lesser cost, i.e.,
a point x? is a global minimum if f(x?) ≤ f(x) for all feasible x. Global minima are exactly the
solution(s) we are seeking when solving problem (1).

1Note that equality constraints can be written by simultaneously imposing hi(x) ≤ bi and hi(x) ≥ bi, while other
authors prefer adding equality constraints more explicitly in the generic formulation (1).

18-1



Local minima are feasible points that only achieve the smallest cost in a small neighborhood around
them. That is, x is a local minimum if f(x) ≤ f(x+δ) for sufficiently small perturbations δ. Note
that for local minima, there might still be feasible points (elsewhere in the feasible set) which do
have lesser cost. Local minima are often the “trap-doors” of optimization, as it can be difficult to
discern whether a given minimum is a local or global minimum, and suboptimal local minima may
correspond to poor estimates of the variables we aim to compute in (1).

In the case of unconstrained optimization (i.e., when there are no constraints on the variables), the
gradient of f(x) at both local or global minima is equal to zero.

18.1.2 Convex Optimization Problems

An important notion across all of mathematical optimization is the notion of convexity. In optimiza-
tion, a problem is convex if both the objective function and the problem constraints are convex;2
we define what it means for a function and for a set to be convex below.

Important: The importance of convexity lies in the fact that convex problems can be solved
in polynomial time using off-the-shelf algorithms and implementations, e.g., [2], while nonconvex
problems are typically hard to solve. Hence convexity is an interesting property to characterize
problems that are “easy” to solve.3 In particular, in convex optimization, every local minimum is
also a global minimum, and there are no suboptimal local minima our algorithms can get stuck into.

Convex Functions. A function f(x) is convex if for any two points, x1 and x2, the line segment
between the values at those points, f(x1) and f(x2), will be either above or coincide with the
function f(x) for all x ∈ [x1,x2]. This is maybe more easily understood by the following drawings
in Figure 1.

Figure 1: Examples of convex and nonconvex functions, with examples of nonconvexity marked with
a red dotted line.

Mathematically, a function f(x) is convex if it satisfies the following relationship in Equation (2)
for any two possible values of x (x1,x2) and all values of λ ∈ [0, 1]:

f(λx1 +(1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2)

Convex (Feasible) Set. A set Ω is convex if for any two points in the set, x1 and x2, every point
on the straight line connecting those two points is also in Ω. This can be understood by the following
diagrams in Figure 2, which show examples of both convex and nonconvex sets.

Mathematically, a set Ω is convex if it satisfies the following relationship in Equation (3) for any two
2Saying the constraints are convex is equivalent to saying the feasible set of the optimization problem is convex.
3Note that “easy” here refers to the fact that these problems can be solved using well-established polynomial-time

algorithms, but the runtime of these algorithms can still be large in some cases.

18-2



Figure 2: Examples of convex and nonconvex sets, with examples of nonconvexity marked with a
red dotted line.

possible values of x (namely, x1,x2) and all values of λ ∈ [0, 1]:

x1,x2 ∈ Ω =⇒ (λx1 +(1− λ)x2) ∈ Ω (3)

18.2 Unconstrained Least-Squares Optimization

Unconstrained least-squares optimization consists in solving an unconstrained optimization problem
in which the cost function f(x) can be written as the sum of squared terms:

min
x∈Rn

∑N
i=1 ‖ri(x)‖2 (4)

This very general form is generally broken down into two subsets: linear least-squares problems
(Section 18.3) and nonlinear least-squares (Section 18.4).

18.3 Linear Least-Squares Optimization

(Unconstrained) Linear least-squares (LLS) optimization is one of the workhorses of modern robotics
(and many, many other fields). LLS problems are convex problems and can be written as:

argmin
x∈Rn

N∑
i=1

‖Ai x − bi‖2 (5)

where Ai ∈ Rmi×n and bi ∈ Rmi . Let us now stack the Ai matrices into a single matrix, A ∈ Rm×n

(where m ,
∑N

i=1mi), and similarly the bi vectors into a single vector, b ∈ Rm:

A =


A1

A2

. . .
AN

 b =


b1
b2
. . .
bN

 (6)

With this more compact notation we can rewrite (5) more succinctly as:

argmin
x∈Rn

‖Ax − b‖2 (7)

Given the form seen in Equation (7), there is a well-known closed-form solution to LLS problems
which we can compute efficiently. This solution to LLS problems comes from solving what are known
as the normal equations:

(A>A)x = A>b (8)

18-3



which are easily obtained by setting the gradient of the cost function (7) to zero (recall that in un-
constrained optimization minima have zero gradient). The general solution to the normal equations
straightforwardly follows:

x = (A>A)−1A>b (9)

The existence of an easily computable closed-form solution is the power of LLS optimization. As we
will see in Sections 18.4.3 and 18.4.4, most techniques for solving nonlinear least-squares are actually
just solving a sequence of linear least-squares problems.

18.3.1 Practical Notes

Under-constrained and Ill-conditioned Problems. Computing the LLS solution in (9) requires
that A>A is invertible. In state-estimation problems, A>A is invertible only if we have enough
measurements to estimate the state of interest (x), a property called observability. In GTSAM [1],
the optimization library we use in VNAV, a LLS can be formulated as a GaussianFactorGraph. When
the matrix A>A is not invertible, GTSAM will throw an IndeterminantLinearSystemException. In
addition, even if A>A is theoretically invertible, if the ratio between the largest eigenvalue and the
smallest eigenvalue is too large this exception may still be thrown, as the system cannot be reliably
solved due to numerical issues.

Solving the Normal Equations. In practice, the matrix (A>A) should almost never be inverted.
Instead, the problem is typically solved by linear system solvers via QR or Cholesky decomposition in
combination with forward and backward substitution. This is covered in more detail in the robotics
context in [1] as well as in the more general context in [3].

Exploiting Sparsity in LLS. In many problems related to robotics, the matrix A in LLS problems
is sparse (i.e., many of the entries of the matrix are zero). This is an important observation, since
there exist sparse linear solvers that can largely reduce the runtime of solving the normal equations
if A is sparse. We direct interested readers to [1, 3] for more in-depth explanations.

18.4 Nonlinear Least-Squares Optimization

Nonlinear least-squares (NLS) optimization is ubiquitous in robotic state estimation. NLS assume
the following general form:

argmin
x∈Rn

N∑
i=1

‖ri(x)‖2 (10)

where ri(x) are called the residual errors and the objective is the sum of residual errors squared.

In this section we will cover NLS optimization at a high level. For slightly more in depth coverage
we also recommend [1] and a great overview given by the Ceres development team4.

18.4.1 Solving NLS Problems

In general, NLS problems are nonconvex problems which do not admit closed-form solutions and
must be solved through iterative (local search) methods. Iterative methods require a starting point
(or initial guess) for the variables in the NLS problem and will then use some local manipulation
of the cost objective function to determine a direction to “step” towards; ideally, after a (hopefully

4http://ceres-solver.org/nnls_solving.html

18-4

http://ceres-solver.org/nnls_solving.html


small) number of steps, the estimate will converge to a minimum of the NLS problem. If you think
of the objective function as defining the “height” over a map of the NLS variables then these methods
can be thought of as walking downhill, iteratively taking steps towards the bottom of the “valley”
the starting point is within. A general template is given in Algorithm 1.

Figure 3: A general local search optimization technique in which a starting point is provided and
the algorithm then iteratively takes steps in a descent direction until reaching some local minimum.

Algorithm 1 Descent Methods
1: Given initial guess x
2: while Convergence Criteria not Satisfied do
3: Choose descent direction: δx ∈ Rn

4: Choose step size: t ∈ R
5: δ ← tδx
6: Update variables: x := x+δ

As NLS problems are widely found, much work has gone into developing such iterative solvers. These
solvers will commonly differ along two key dimensions: 1) how the step direction is chosen and 2)
how the step size is chosen. The NLS approaches we will discuss here will be Newton’s method,
the Gauss-Newton (GN) method, and the Levenberg-Marquardt (LM) method. Various forms of
gradient descent and steepest descent are other common iterative methods for optimization which
we do not discuss here but are commonly used for various other problems.

Mathematical Notation. We first begin by briefly defining a few symbols that will reappear
throughout these notes. For our given cost function f(x), we will often use a small perturbation,
δ ∈ Rn, in the variable x ∈ Rn to represent how the cost function will change as f(x+δ). We will
denote the gradient of the cost function at a given x as ∇f(x) ∈ Rn. Similarly, we will denote the
hessian of the cost function (the second derivative) as ∇2f(x) ∈ Rn×n.

18.4.2 Newton’s Method

At each iteration, Newton’s method is simply minimizing the 2nd-order approximation of the cost
function f(x), computed at the current estimate of x. Unlike the other approaches we will discuss
below, Newton’s method applies to any (twice continuously differentiable) real-valued cost function.
That is, it is not unique to nonlinear least-squares problems. Given an initial guess x̄, the cost

18-5



function f(x) is approximated as:

fNewton(x̄ + δ) = f(x̄) +∇f(x̄)δ +
1

2
δ>∇2f(x̄)δ (11)

As this is a quadratic cost function in the variable δ, there is a well-known analytical solution for
the δ to minimize the cost. Effectively, we want to find the δ such that the derivative of the cost
function is equal to zero. By setting the derivative of fNewton(x̄+δ) to zero we obtain Equation (12)

∇f(x) +∇2f(x)δ = 0 (12)

This looks just like the normal equations from our LLS section! From this we can trivially find our
optimal δ∗ as described in Section 18.3 (hopefully keeping in mind some of the practical details to
make sure the solution is both efficient and numerically stable).

From here the original Newton’s method will take a descent step of exactly δ∗, i.e. this determines
both descent direction and step size. More common variants will use the direction of δ∗ to define
the descent direction but perform what is known as line search to choose a step size in the descent
direction.

Figure 4: Graphical example of how Newton’s method works, by solving iterative quadratic approx-
imations of the cost function.

18.4.3 Gauss-Newton Method

The Gauss-Newton (GN) method can be understood as an approximation of Newton’s method in
which the Hessian is approximated by just the first-order derivative components. Consider the NLS
problem in Equation (10) and assume for simplicity that the residual errors are scalars. In the NLS
case, the Hessian can be written as:

∇2f(x) =

N∑
i=1

(∇ri(x)∇r>i (x) + ri(x)∇2ri(x)) (13)

From here the GN method replaces the Hessian by just pruning out the (ri(x)∇2ri(x)) components,

18-6



leaving us with an approximation as in Equation (14):

∇2f(x) ≈ ∇2
GNf(x) =

N∑
i=1

(∇ri(x)∇r>i (x)) (14)

It is apparent that this approximation is valid under the condition that the pruned components
are small. In practice this approximation is generally good if the initial estimate is good (i.e. the
residuals are small) and the function is a least-squares problem (i.e. of the form in Equation (10)).
It’s important to note that the GN method is not guaranteed to converge to a given solution and
that a given step in the GN method can actually result in an increase in cost.

An alternative interpretation of the GN method is that at each iteration, GN linearizes the residual
errors in Equation (10) around the current estimate x̄:

argmin
δ∈Rn

N∑
i=1

‖ri(x̄) +∇ri(x̄)δ‖2 (15)

and then solves the corresponding linear least squares problem to compute a step δ. The approach
easily generalizes to the case where the residual errors are vector valued, i.e., ri(x) ∈ Rmi , in which
case the linear-residual approximation becomes:

argmin
δ∈Rn

N∑
i=1

‖ri(x̄) + Ji(x̄)δ‖2 (16)

where the Jacobian matrix Ji ∈ Rmi×n stacks (row-wise) the gradients of each entry of ri(x) with
respect to x. If we stack all Jacobians Ji into a single matrix J and all residuals ri(x̄) into a single
vector r(x̄), we can write the previous problem as:

argmin
δ∈Rn

‖J(x̄)δ + r(x̄)‖2 (17)

which admits the usual LLS closed-form solution:

δ? = −
(
J(x̄)>J(x̄)

)−1
J(x̄)>r(x̄) (18)

Algorithm 2 Gauss-Newton Method
1: Given initial guess x̄
2: while Convergence Criteria not Satisfied do
3: ri(x̄) + Ji(x̄)δ ← linearize ri(x)
4: form J(x̄) and r(x̄) by stacking Ji(x̄) and ri(x̄)
5: δ? ← solve{

(
J(x̄)>J(x̄)

)
δ = −J(x̄)>r(x̄)}

6: x̄← x̄ + δ?

18.4.4 Levenberg-Marquardt Method

The Levenberg-Marquardt (LM) method is another descent method for NLS problems. The LM
method is known as a trust-region method as it effectively defines a radius over which the GN
approximation is trusted. As the GN approximation is a linear approximation of the cost function,
the LM method attempts to account for the accuracy of the linear approximation.

18-7



As seen in Algorithm 3, the LM method is effectively solving the GN problem with an additional
weighted diagonal component in the linear least-squares step. When this weighted diagonal is
substantial (i.e. λ � 1) the LM method is effectively performing gradient descent. When the
weighted diagonal component is small (i.e. λ � 1) the LM method is effectively just the Gauss-
Newton method. As the weight is adaptively adjusted based on how well the result matches the
expectation from the linear approximation, this allows for the trust region to be adaptively controlled
while the LM method is being run. This can provide substantial robustness in the solution of NLS
problems. Note that there are some details left out of this description, primarily how do we check if
the linear approximation is good. This is because there are several different approaches to this and
many proposed rules for how to adjust the λ at each step.

Algorithm 3 Levenberg-Marquardt Method
1: Given initial guess x̄
2: λ← 10−3

3: while Convergence Criteria not Satisfied do
4: ri(x̄) + Ji(x̄)δ ← linearize ri(x)
5: form J(x̄) and r(x̄) by stacking Ji(x̄) and ri(x̄)
6: δ? ← solve{

(
J(x̄)>J(x̄) + λI

)
δ = −J(x̄)>r(x̄)}

7: if linear approximation is good then
8: . accept update and increase trust region size
9: x← x+δ?

10: λ← λ/2
11: else
12: . decrease trust region size
13: λ← λ ∗ 2

18.4.5 Practical Notes and Extra Pointers

Local Minima in NLS. Generally, NLS optimization problems will have local minima. This is
particularly problematic when we do not have a good initial guess, and we are dealing with high-
dimensional functions (both of these are often the case in robotics).

Initialization Procedures for NLS Solvers. The basin of convergence for a given minimum
is the set of all variable assignments such that the iterations from those points will converge to
that minimum. As the solution quality is effectively determined by which basin the NLS solver is
initialized within, there is much interest in techniques to compute high-quality initializations. An
excellent overview of some recent initialization approaches for SLAM can be found in [4].

NLS in GTSAM. In GTSAM [1], a NLS can be formulated as a NonlinearFactorGraph. The
initial guess can be specified by instantiating a suitable Values structure. Each term in the objec-
tive Equation (10) is referred to as a factor in GTSAM.

Under-constrained and Ill-conditioned Problems. As for the linear case, the linear system
solved at each iteration of the GN method may not be invertible. This is again due to a lack of
observability or to numerical ill-conditioning. For instance, consider a monocular bundle adjustment
problem. As we know, the problem can only be solved up to scale, which means that there is an
infinite number of solutions that achieve the same optimal cost, resulting in a under-constrained
problem. Moreover, in BA we can rotate or translate all the camera poses by the same amount while
preserving their relative geometry, which also creates extra ambiguity. Therefore, in these problems
it is not uncommon to observe an IndeterminantLinearSystemException when using GTSAM.

18-8



There are 2 potential solutions to avoid this problem. The first is to add extra measurements (often
called “priors”) that can remove this ambiguity. For instance, we can put a prior fixing the first
pose (which prevents the cost to be invariant to global rotations and translations) and we can put
a prior on the relative distance between two camera poses (which removes the scale ambiguity).
In alternative, we can use the LM solver which naturally ensures the matrix arising in the normal
equations to be invertible by adding the term λI (for some positive λ).

Noise Assumptions in Least-Squares Optimization. Attentive readers may remember that the
least-squares problems of interest were originally derived from the assumption of Gaussian additive
noise. Interestingly, though the Gaussian noise case is the simplest to derive, many other practical
noise models can also be formulated into least-squares problems via maximum a posteriori inference
and some algebraic cleverness [5].

References
[1] Frank Dellaert and Michael Kaess. “Factor Graphs for Robot Perception”. In: Foundations and

Trends in Robotics 6.1-2 (2017), pp. 1–139. issn: 1935-8253. doi: 10.1561/2300000043.

[2] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming. url: http:
//cvxr.com/cvx.

[3] Lloyd N Trefethen and David Bau III. Numerical linear algebra. Vol. 50. Siam, 1997.

[4] Luca Carlone et al. “Initialization techniques for 3D SLAM: A survey on rotation estima-
tion and its use in pose graph optimization”. In: vol. 2015-June. 2015, pp. 4597–4604. isbn:
9781479969234. doi: 10.1109/ICRA.2015.7139836.

[5] David M Rosen, Michael Kaess, and John J Leonard. “Robust incremental online inference over
sparse factor graphs: Beyond the Gaussian case”. In: 2013 IEEE International Conference on
Robotics and Automation. IEEE. 2013, pp. 1025–1032.

18-9

https://doi.org/10.1561/2300000043
http://cvxr.com/cvx
http://cvxr.com/cvx
https://doi.org/10.1109/ICRA.2015.7139836

	Preliminaries: Minima and Convexity
	Minima
	Convex Optimization Problems

	Unconstrained Least-Squares Optimization
	Linear Least-Squares Optimization
	Practical Notes

	Nonlinear Least-Squares Optimization
	Solving NLS Problems
	Newton's Method
	Gauss-Newton Method
	Levenberg-Marquardt Method
	Practical Notes and Extra Pointers


