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Where are we?

Week Dates Lecture topic Lab

1 Sep 8, 10 Introduction Lab 1: Linux, C++, Git

2 Sep 13, 15, 17 3D Geometry Lab 2: ROS

Lab 3: 3D trajectory

Sep 20, 22, 24 Geometric Control .
following

Lab 4: 3D trajectory

Sep 27, 29 Trajectory Optimizati
ep rajectory Lpfimization optimization

Oct1,4,6 2D Computer Vision Lab 5: feature detection

2-view Geometry

Oct 8, 13, 15 and Minimal Solvers

Lab 6: object localization

Oct 18, 20, 22 Non-rr'ummal Solvers and Lab 7- GTSAM
Visual Odometry

Oct 25, 27, 29 Place Recognition Lab 8: ML for robotics

Nov1,3,5 SLAM and Visual-Inertial Navigation |Lab 9: SLAM

Advanced Topics: Open Problems in

Nov 8, 10, 12 .
ov Robot Perception

Final project

Nov 15, 17, 19 Advanced Topics: Robustness Final project

Nov 22, 24, 29, | Advanced Topics: Metric-Semantic
Dec 1 Understanding and Learning

Thanksgiving Break |

Guest Lectures and
Students Presentations

Final project

Final project




Today

¢ \/O: Visual Odometry

e \/|O: Visual-Inertial Odometry

Beyond vision

~ROBOTICS..

~AUTOMATION ~BUTOMAT

Manipulate
and Imitate

~ROBOTICSs:
1ON

Visual Odometry

Part I: The First 30 Years and Fundamentals

Part IIl: Matching, Robustness, Optimization, and Applications

By Friedrich Fraundorfer and Davide Scaramuzza

On-Manifold Preintegration for Real-Time
Visual-Inertial Odometry

Christian Forster, Luca Carlone, Frank Dellaert, Davide Scaramuzza

Abstract—Current approaches for visual-inertial odometry
(VIO) are able to attain highly accurate state estimation via
nonlinear optimization. However, real-time optimization quickly
becomes infeasible as the trajectory grows over time; this problem
is further emphasized by the fact that inertial measurements
come at high rate, hence leading to fast growth of the number
of variables in the optimization. In this paper, we address this
issue by preintegrating inertial measurements between selected
keyframes into single relative motion constraints. Our first
contribution is a preintegration theory that properly addresses
the manifold structure of the rotation group. We formally discuss
the generative measurement model as well as the nature of the
rotation noise and derive the expression for the maximum a
posteriori state estimator. Our theoretical development enables
the computation of all necessary Jacobians for the optimization
and a-posteriori bias correction in analytic form. The second
contribution is to show that the preintegrated IMU model can be
seamlessly integrated into a visual-inertial pipeline under the uni-
fying framework of factor graphs. This enables the application of
incremental-smoothing algorithms and the use of a structureless
model for visual measurements, which avoids optimizing over the
3D points, further accelerating the computation. We perform an
extensive evaluation of our monocular VIO pipeline on real and
simulated datasets. The results confirm that our modelling effort
leads to accurate state estimation in real-time, outperforming
state-of-the-art approaches.

of monocular vision and gravity observable [1] and provides
robust and accurate inter-frame motion estimates. Applications
of VIO range from autonomous navigation in GPS-denied
environments, to 3D reconstruction, and augmented reality.

The existing literature on VIO imposes a trade-off between
accuracy and computational efficiency (a detailed review is
given in Section II). On the one hand, filtering approaches
enable fast inference, but their accuracy is deteriorated by the
accumulation of linearization errors. On the other hand, full
smoothing approaches, based on nonlinear optimization, are
accurate, but computationally demanding. Fixed-lag smooth-
ing offers a compromise between accuracy for efficiency;
however, it is not clear how to set the length of the estimation
window so to guarantee a given level of performance.

In this work we show that it is possible to overcome
this trade-off. We design a VIO system that enables fast
incremental smoothing and computes the optimal maximum
a posteriori (MAP) estimate in real time. An overview of our
approach is given in Section IV.

The first step towards this goal is the development of a novel
preintegration theory. The use of preintegrated IMU measure-
ments was first proposed in [2] and consists of combining



Visual Odometry

odometry: incremental motion estimation

'ime 0O Time 1

Visual odometry (VO): motion estimation estimation
based on cameras (monocular, stereo, RGB-D, ...)

others: wheel odometry, inertial, visual-inertial



Feature Tracking




Monocular VO with 2D-2D Correspondences

Image t-1

It t>1
Feature Triangulate Nigrmalize
» T,

matching/ points —

tracking (t-1,1)
T,

undistort/
caliorate RE=rSiraere

Essential
Matrix

Feature
detection

Recover
Relative

(5-point +
RANSAC)

2-view Mono VO



Stereo Matching




Stereo VO with 3D-3D Correspondences

Stereo Pair
t-1

Stereo Pair t .
- Estimate

Feature Stereo

Feature pose using k&

matching/ matching AFUN'S
tracking and points method +

triangulation RANSAC

.

detection

2-view Stereo VO




(Parenthesis on Stereo Matching)

—ronto-
narallel

Left view

(a)

Right view

Left carnera
&

"

\1

Object

m quht camera
Raw images

CZT—> (b) Undistorﬂon@

OpenCV: stereoRectify, initUndistortRectifyMap



Parenthesis on Stereo Matching

© Frank Dellaert. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

[courtesy of Frank Dellaert



(Parenthesis on Stereo Matching)

After rectification, we can restrict search for left-right

matches to horizontal lines
Left image o | Right image

[courtesy of Frank Dellaert
and Pablo Alcantarilla]




Comparing VO approaches

Ty =14

Drift (error T, = ToTy

accumulation):

T, = T\T} = T, T T

T, =T, T/ ' =TyT°Ty) - - T}

Mono VO:.

- 5-point method accurate

100 -

Stereo VO:
- scale g

Can we do better?

-100

— VYO
GPS

YOws. GPS—Sequence 07

1
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1
-100

1 1 1 1
-50 0 50 100



Refinement: Bundle Adjustment

(Windowed) Bundle Adjustment

Pi, P2
e Feia’:]qre TnangL; late Normalize T
detection e '|ng/ POINtS scale - ST t
tracking - — e ™
undistort/ VS l/v

calibrate (=S

Essential
Matrix

Recover
Relative

Time t

Time t-1

(5-point +
RANSAC)

Windowed Bundle Adjustment: optimization of the most recent
camera poses and points via non-linear least squares

N

' 2
oo Y ek — (T pe)

C .

Can be applied to all the pipelines discussed today



Stereo VO example (2)

1 -
Ground Truth
— Visual Odometry

Left Camera

1 | 1 | 1 | |
10 =200 -100 0 100 200 300 400 500

Typical drifts: 0.1% to 2% of trajectory travelled

[courtesy of Frank Dellaert]



Challenges for VO (1/3): lllumination and Features

Feature detection,

tracking,
matching ...




Challenges for VO (2/3): Dynamic Scenes

- Dynamic, crowded scenes present a real challenge
» Can't rely on RANSAC to always recover the correct inliers

- Example: Large van “steals” inlier set in passing

Outliers

[courtesy of Frank Dellaert]



Challenges for VO (3/3): Fast Motion

Need good overlap between consecutive images

fed:0 #selected:10

Robot speed, camera framerate, ...



VO Tricks (1/2): Feature Distribution

Attention &
Anticipation:

select features depending on motion of the robot



VO Tricks (2/2): Domain Knowledge and Keyframes

»  Stereo VO Example: Cross-traffic while waiting to turn left at light

" H‘;,ﬂi..f'"" liuizz::u‘ﬁ » !u‘ 1;:_:':!‘"::':'{"
w Aﬂu" g -nnﬁil . A&:’ wmymyll -

T Only accept incremental

pose if:

« Translation > 0.5m

« Dominant direction is

forward
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\ »
»‘W"’ R BN

il Lt T e
h"mmmm m 1“ ”ﬂl : u:';l Hllil::;;::lllll |
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L;+:mp
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With keyframing

Without keyframing

[courtesy of Frank Dellaert]



Stereo VO example (1)

S

Source: public domain. Courtesy of NASA/JPL/Cornell University.

—arlier implementation: Moravec’s

Spirit and
Opportunity
Mars rovers:

e stereo VO

e 20-MHz CPU

® Up to three
minutes for
2-view VO

¢ Drift ~0.5% of
trajectory travelled

PhD Thesis (1980)



Beyond VO

How to get scale and improve robustness?

add more sensors!
» wheel odometry
» GPS
» Lidar
nertial
Measurement 830g

Unit (IMU)

38 W 2.5 W 0.3W ~1 W



Visual-Inertial Navigation (VIN

gyro [rad/s]

acc [m/s?]
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Visual-Inertial Odometry

MLE/MAP Estimator

If t>1

4 Eohir Feta’;]qre / Trlan.gLiIate Nerrelie : T
detection LIS '|ng p?ln N scale : t

tracking

undistort/

calibrate -
Eshma‘te Fectier

Matrix B MU Factor
c
&\
e@(;

B vision Factor

(5-point +
RANSAC)

/

Camera factors Imu factors

mln 51 Y I|wk r Tz,pk)||2 + Z ||rimu(1—%711i+17,vi7,vi+17 bi7 bi+1)||2
pk,k 1,. N k=11€Cs i=1,...,Nc—1

Need to include velocities and IMU biases in the state ...



Visual-Inertial Odometry

< » 20-120Hz

+<— 100-800Hz no synchronization
L,

R ; 5‘/ =

; g |
- | |mu data - Imu data - |mu data -

time

image image image image
pair pair pair pair
Challenges:

e IMU measurements arrive at high-rate (~200Hz) ¢ IMU preintegration
e camera observes hundreds of landmarks per frame g» structureless

Y | vision factors
® need to solve optimization problem quickly



Pre-integration

VA

After 10 seconds, original
problem has ~104 states

o8

. [
&

Preintegration

v

After 10 seconds,
preintegrated problem
has ~102 states

Uk

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TRO 2017]



Visual-Inertial Odometry

Hand-held
SEensor

sl s . s L

Cotedy o

S

oo © . oy . -~
,','.';--r-o-,-\.ﬁv-'_'-h--w—\-\-rqr e Al T PL A gy T - T e o, ¥ ¥ 7% WA,

Implemented
in GTSAM
(ImuFactor)

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TRO 2017]



Recent Implementations / Products

Pokemon Go

Oculus Rift

Project Tango :
| Announced In 2012.
Reinvented as Acquired by
ARCore in 2017 Facebook in 2014
‘ _
Navion Chip
2017

(http://navion.mit.edu/)



http://navion.mit.edu/
http://navion.mit.edu/

Beyond VO

How to get scale and improve robustness?

add more sensors!

» wheel odometry
» GPS

» Lidar
» [nertia
Measurement 830g

Unit (IMU)

38 W 2.5 W 0.3W ~1 W



Lidar Odometry & Lidar SLAM

(%]

DARPA Subterranean Challenge, in collaboration with JPL




Feature-based Lidar Odometry

Time O

Time t

Time 1 Time t-1

-~ - -
-y -
N




Feature-based Lidar Odometry

1me 0 Time 1 Timet1 Mel

Registration. compute relative

DOSe between scans:
- use descriptors for matching
- compute relative pose



Feature-based Lidar Odometry

Time O

Time 1

Registration. compute relative
pose between scans:
- extract features & descriptors

- use descriptors for matching

- compute relative pose



Feature-based Lidar Odometry

1me 0 Time 1 Timet1 Mel

Registration. compute relative
pose between scans:
- extract features & descriptors

- use descriptors for matching
- compute relative pose



Feature-based Lidar Odometry
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[Zhang and Singh: LOAM: Lidar Odometry and Mapping in Real-time, 2014]

Other approaches: based on lterative Closest Point (ICP



Removing Dirift via Loop Closure

Visual(-inertial) odometry SLAM

VYOws. GPS—Sequence 07

=5

0
x[meters)

SLAM requires:
e place recognition (loop closure detection)
e Re-detecting landmarks (e.g., objects)

Next lecture!



Need for loop closure

ORB-SLAM

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardos

{raulmur, josemari, tardos} @unizar.es

Instituto Universitario de Investigacion ~ “auasens - -
en Ingenieria de Aragon _ U n |VerS|dad
Zaragoza

Universidad Zaragoza
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