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SLAM (Simultaneous Localization and Mapping) requires:
e place recognition => loop closure detection

and / or

e Object detection => landmark detection



Need for loop closure

ideo x3 !

ORB-SLAM

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardos



Today + Next Lecture

 Place recognition

» Object detection/

recognition

Visual Place Recognition: A Survey

Stephanie Lowry, Niko Sunderhauf, Paul Newman, Fellow, IEEE, John J. Leonard, Fellow, IEEE, David Cox,
Peter Corke, Fellow, IEEE, and Michael J. Milford, Member, IEEE

Abstract—Visual place recognition is a challenging problem due
to the vast range of ways in which the appearance of real-world
places can vary. In recent years, improvements in visual sensing
capabilities, an ever-increasing focus on long-term mobile robot au-
tonomy, and the ability to draw on state-of-the-art research in other
disciplines—particularly recognition in computer vision and ani-
mal navigation in neuroscience—have all contributed to significant
advances in visual place recognition systems. This paper presents a
survey of the visual place recognition research landscape. We start
by introducing the concepts behind place recognition—the role of
place recognition in the animal kingdom, how a “place” is defined in
arobotics context, and the major components of a place recognition
system. Long-term robot operations have revealed that changing
appearance can be a significant factor in visual place recognition
failure; therefore, we discuss how place recognition solutions can
implicitly or explicitly account for appearance change within the
environment. Finally, we close with a discussion on the future of

(a)

(b)

Fig. 1. Visual place recognition systems must be able to (a) successfully match
very perceptually different images while (b) also rejecting incorrect matches
between aliased image pairs of different places.

+ a few more
recent papers



Place Recognition & Image Retrieval
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Does the image at time “t” picture a place
seen in previous images?



Place Recognition: Challenges

* Appearance changes:
- lllumination
- Weather conditions
- Dynamic objects
(people, cars,...)
- Viewpoint changes

* Perceptual aliasing:
two different places
may look similar
(building, roads, ...)




A brute force approach
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Scalability is crucial..
Image retrieval/place recognition vs.

pose estimation



Image Retrieval

GO gle {\’;!Luca_...one_w.jpg B {4 Q

Q Al [ Images (8 Maps QO Shopping i More Settings  Tools

About 2 results (0.60 seconds)

Image size:
7765 x 5179

No other sizes of this image found.



Image Retrieval: Approaches

- Local descriptors

- Global descriptors

- Learning-based methods

[courtesy of Lowry’16]



Local descriptors

SIFT, SURF, ORB, Brief, ...

Naive approach:
stack all descriptors
INn a vector

|s this a good
image descriptor?



_ocal descriptors: Bag of Words

Based on text retrieval and summarization methods

1) Extract features and descriptors in image
2) Discretize feature space (clustering)
3) Store the frequency of the features for each image

Each cluster is a “visual word”
Typically 5k-10k (up to 100k) visual words

J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In ICCV, 2003.



Local descriptors: Bag of Words

Two Images are compared based on the corresponding
histogram (Hamming distances, other metrics, ...)

Faster version: vocabulary tree

Alternatives: VLAD (Vector
of Locally Aggregated
Descriptors), Fisher vectors




Global descriptors

From collection of features/objects to global properties:

——

A. Oliva and A. Torralba, Modeling the Shape of the Scene: A
Holistic Representation of the Spatial Envelope, IJCV, 2001.



Global descriptors

Early approaches:

e color histograms

e principal component analysis

e other statistics on edges,
corners, and color patches

Early 2000:

o GIST descriptor:

* image is filtered at difterent orientations and different
frequencies to extract information from the image

® results are averaged to generate a compact vector that
represents the “gist” of a scene

A. Oliva and A. Torralba, Modeling the Shape of the Scene: A
Holistic Representation of the Spatial Envelope, IJCV, 2001.



Visual Experiment



Visual Experiment




Visual Experiment



Visual Experiment

What was the content of the image?

o A: bullding

¢ B: beach

e (C: dog

e[): car



Global descriptors

(A) (B)

[Oliva, Torralba’01]:

e 20 ms: observers used the low spatial frequency part of hybrids
(street in Fig. B)

e 150 ms: observers categorized the image on the basis of the high
spatial frequencies (e.g., beach in Fig. B)

A. Oliva and A. Torralba, Modeling the Shape of the Scene: A
Holistic Representation of the Spatial Envelope, IJCV, 2001.



Global descriptors

(A) (B)

[Oliva, Torralba’01]: evidence that visual input is processed at different
spatial scales (from low to high spatial frequency):

- Low frequency: less sensitive to noise and nuisances, but also less
detalls

- High-frequency: finer details

A. Oliva and A. Torralba, Modeling the Shape of the Scene: A
Holistic Representation of the Spatial Envelope, IJCV, 2001.



e Compute weights by doing
Principal Component on the
responses to multi-scale filters

e \Weights mapped to properties
(openness, naturalness,
roughness, expansion, ...)

A. Oliva and A. Torralba, Modeling the Shape of the Scene: A
Holistic Representation of the Spatial Envelope, IJCV, 2001.



GIST and Spatial Envelop

Flat view of a man-made environment,
vertically structured.
Small space with large elements.

>

P Man-made open environment.

} Man-made closed urban environment.

Flat view of a man-made semi-closed
' » urban environment.

Flat view of a man-made closed
: ’ urban environment.
Large space with small elements.

Perspective view of a man-made closed
urban environment.
Large space with small elements.

Flat view of a man-made urban

Perspective view of a man-made
5’ ’ environment, vertically structured.

} open environment.

A. Oliva and A. Torralba, Modeling the Shape of the Scene: A
Holistic Representation of the Spatial Envelope, IJCV, 2001.
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SLAM (Simultaneous Localization and Mapping) requires:
e place recognition => loop closure detection

and / or

® Object detection => landmark detection



Image Retrieval: Approaches

- Local descriptors

- Global descriptors

- Learning-based methods

[courtesy of Lowry’16]



Local vs. Global Descriptors

Local descriptors:

e allow estimating feature (and "% —Vioua words (IFT)
Caﬂera) geOmetry % 38 Raw RGB image
- . . O 60
® sensitive to lighting =
conditions and seasonal 5o
variations ] Eetetdeteteietsiletsisitetsieteisststsitetei
S 3 EP8 3 8B2 LG EET
2525258352868 28%
Global descriptors: e g T85E
e better at handling lighting °
o Figure 1. Comparison of Spatial Sift and Gist features for a scene
Cond |t|OnS and Seasonal r;cogni;ion task. Both se}’i ot; 5features have a§tr01f correlatio?in
the performance across the scene categories. Average perfor-
Va r| at | on manrc):e for the different features are: Gist: %3.0%, Pyramgid gatch—

ing: 73.4%, bag of words: 64.1%, and color pixels (SSD): 30.6%.

® more sensitive to viewpoint = malleases weusean SVM,
changes

A. Quattoni and A. Torralba, Recognizing Indoor Scenes, CVPR’09.



Deep Learning Revolution

-new take on algorithms
-large amount of data
-large amount of computing (GPU)

2010: ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) is launched
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Deep Learning Revolution

AlexNet:

. . . 25%
- winning entry in ILSVRC 2012 .
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L earning-based Descriptors: NetVLAD

Earlier approaches: using AlexNet or similar and use

layers activations as descriptors

NetVLAD:

e CNN-based approach
e [rained on the task of place recognition
e Clever use of Internet data for training

NetVLAD layer

________________________________________________________________

____________________________

conv (w,b)
1x1xDxK

L2

|
| normalization

— o — — — — — ———— ] ——— —— — ]

1

/

: IWxHxD map interpreted as
| I NxD local descriptors x

intra-
normalization
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R. Arandjelovix, P. Gronat, J. Sivic, NetVLAD: CNN Architecture for Weakly Supervised Place Recognition, CVPR’16.



Learning-based Descriptors: NetVLAD

How to get labeled data?

¢ a large dataset of panoramic
images from the Google Street
View Time Machine

® positions based on their
(noisy) GPS

e Seasonal variations

e |[lumination changes

Figure 4. Google Street View Time Machine examples. Each
column shows perspective images generated from panoramas from
nearby locations, taken at different times. A well designed method
can use this source of imagery to learn to be invariant to changes
in viewpoint and lighting (a-c), and to moderate occlusions (b).
It can also learn to suppress confusing visual information such as
clouds (a), vehicles and people (b-c), and to chose to either ignore
vegetation or to learn a season-invariant vegetation representation
(a-c). More examples are given in appendix B.



Metrics

True positives (TP): correct matches
False positives (FP): incorrect matches
False negatives (FN): missed matches

. TP
Precision =
TP + FP
Recall = P
T TP EN

Perfect system:
100% precision (O FP)
100% recall (O FN)



Learning-based Descriptors: NetVLAD
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Figure 5. Comparison of our methods versus off-the-shelf networks and state-of-the-art. The base CNN architecture is denoted in
brackets: (A)lexNet and (V)GG-16. Trained representations (red and magenta for AlexNet and VGG-16) outperform by a large margin off-
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for AlexNet, Places205,

depth data not available in other datasets. Additional results are shown in appendix C.

] only evaluated on Tokyo 24/7 as the method relies on

- query image is deemed correctly localized if at least one of the top N
retrieved database images is within d = 25 meters from the ground truth
position of the query.

- percentage of correctly recognized queries (Recall) is then plotted for
different values of N

R. Arandjelovix, P. Gronat, J. Sivic, NetVLAD: CNN Architecture for Weakly Supervised Place Recognition, CVPR’16.



Handcrafted vs. Learned Local Descriptors

¢ lcarned descriptors typically outperform SIFT in terms of
recall, while SIFT performs better in terms of precision

e advanced SIFT variants outperform learned features

¢ lcarned descriptors have high variance across the different
datasets (i.e., over-fitting)

Fountain Herzjesu South Building
Number of
Madrid Metropolis Gendarmenmarkt Tower of London registered
images for
the different
Alamo Roman Forum Cornell methOdS
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Schonberg et al., Comparative Evaluation of Hand-Crafted and Learned Local Features, CVPR'17.
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IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. I, FEBRUARY 2016

Visual Place Recognition: A Survey

Stephanie Lowry, Niko Sunderhauf, Paul Newman, Fellow, IEEE, John J. Leonard, Fellow, IEEE, David Cox,
Peter Corke, Fellow, IEEE, and Michael J. Milford, Member, IEEE

Abstract—Visual place recognition is a challenging problem due
to the vast range of ways in which the appearance of real-world
places can vary. In recent years, improvements in visual sensing
capabilities, an ever-increasing focus on long-term mobile robot au-
tonomy, and the ability to draw on state-of-the-art research in other
disciplines—particularly recognition in computer vision and ani-
mal navigation in neuroscience—have all contributed to significant
advances in visual place recognition systems. This paper presents a
survey of the visual place recognition research landscape. We start
by introducing the concepts behind place recognition—the role of
place recognition in the animal kingdom, how a “place” is defined in
a robotics context, and the major components of a place recognition
system. Long-term robot operations have revealed that changing
appearance can be a significant factor in visual place recognition
failure; therefore, we discuss how place recognition solutions can
implicitly or explicitly account for appearance change within the
environment. Finally, we close with a discussion on the future of

(a)

(b)

Fig. 1. Visual place recognition systems must be able to (a) successfully match
very perceptually different images while (b) also rejecting incorrect matches
between aliased image pairs of different places.

+ a few more
recent papers



Traditional Object Detectors

- template matching
(sliding window)

template

- feature-based

(scalability?)



Traditional Object Detectors

Object proposal + object classification
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Learning-based Object Detection: YOLO

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 x 448, (2) runs a single convolutional net-
work on the 1image, and (3) thresholds the resulting detections by
the model’s confidence.

- YOLO processes images 45 frames per second.
- A smaller version of the network, Fast YOLO, processes an 155fps

Redmond et al, “You Only Look Once: Unified, Real-Time Object Detection”, CVPR’16.



Learning-based Object Detection: YOLO

448

i

n2

T
’ =
448 3 28 Jﬁ—\
3 3 7 7 7
2 . : I— XHX
| | 14 , A
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers  Conn. Layer Conn. Layer
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Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-s2 2x2-s2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-s-2
Maxpool Layer  Maxpool Layer
2x2s-2 2x2-52

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

i Image is split in S x S grid.

T -

Yolo is trained to predict:

e B bounding boxes in each
grid cell (x,y, h, w,
confidence)

e A class label for each cell

Bounding boxes + confidence

S x S grid on input Final detectuons

Class probability map



Redmond et al, “You Only Look Once: Unified, Real-Time Object Detection”, CVPR'’16.



https://www.youtube.com/watch?v=uG2UOasIx2I
https://www.youtube.com/watch?v=uG2UOasIx2I

L earning-based Object Detection: YOLO

MAP: mean Average Precision (average precision value for
recall value over O to 1).

Real-Time Detectors Train mAP FPS
100Hz DPM [ 1] 2007  16.0 100 . - :
A0Hz DPM [31] 007 261 30 Limitations of YOLO:.
e OO o - small objects: “each grid cell only
T oo Than Real Time predicts B boxe; and Can_only have one
Fastest DPM [ ] 2007 304 15 class. This spatial constraint limits the
R-CNN Minus R [20] 2007  53.5 6 '
Fast RCNN [ /] 0074201 700 0.5 number Qf nearby objects that our model
Faster R-CNN VGG-16[2%] 200742012 732 7 can predict. Our model struggles with
Faster R-CNN ZF [28] 2007+2012  62.1 18 small objects that appear in groups, such
YOLO VGG-16 200742012 66.4 21 : "
as flocks of birds.
Table 1: Real-Time Systems on PASCAL VOC 2007. Compar- - generalization: fails to detect objects in

ing the performance and speed of fast detectors. Fast YOLO is

the fastest detector on record for PASCAL VOC detection and is new or Unusual aSpeCt ratIOS or

still twice as accurate as any other real-time detector. YOLO is COﬂfIguraJ[IOﬂS_
10 mAP more accurate than the fast version while still well above
real-time in speed.



