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Today

• Recap: pose graph optimization + 
landmark-based SLAM 

• Factor Graphs 
• Marginalization



Pose Graph Optimization

• Measurements: odometry + loop closures (relative poses) 
• Variables: robot poses
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Pose Graph Optimization: Sparsity



Pose Graph Optimization: Example

https://www.youtube.com/watch?v=KYvOqUB_odg

https://www.youtube.com/watch?v=KYvOqUB_odg
https://www.youtube.com/watch?v=KYvOqUB_odg


Landmark-based SLAM

• Measurements: odometry + measurements of (projection, 
range, position, or others) of external landmarks 

• Variables: robot poses and landmark positions



Landmark-based SLAM: Sparsity



Example of Hessian (sparsity) in BA



Landmark-based SLAM: Example

https://www.youtube.com/watch?v=OdJ042prg_M 

https://www.youtube.com/watch?v=OdJ042prg_M
https://www.youtube.com/watch?v=OdJ042prg_M


Some terminology



Other SLAM Problems
• Consider a visual-SLAM problem where we  

also want to estimate the camera calibration:

Problem: the projective measurements depend on (i) a pose, (ii) a 3D 
point, and (iii) the unknown calibration. We can no longer use a standard 
graph representation where measurements are (pairwise) edges

K?



A General Model: Factor Graphs

• Bipartite graph describing measurements and variables 
in our SLAM problem:
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Factor Graph: Example

[courtesy of Cadena et al.]

Factors



Factor Graph: Sparsity
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• Sparsity is dictated by  
topology of the factor graph:
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What if we only care about subset of variables?

Block structure 
in the Information 
Matrix

• What if we only want to compute a subset of variables?



The Schur Complement (Linear Algebra Perspective)



The Schur Complement Trick in BA / landmark-based SLAM



The Schur Complement (Probabilistic Perspective)

Schur complement



Schur Complement & Marginalization



Schur Complement & Marginalization



Marginalization: Example 1



Marginalization: Example 2

Marginalize 



Smoothing and Filtering

MAP or Full smoothing (estimate entire trajectory and map) 
‣ Many variables but 
‣ Information matrix               is sparse 

Fixed-lag smoothing (estimate only 
variables in a time window) 
‣ Use Schur complement to marginalize 

out old states (hence less variables)  
‣ Information matrix after Schur 

complement is denser 

Filtering (estimate only current pose and 
landmarks) 
‣ Use Schur complement to marginalize out 

ALL old states (hence few variables) 
‣ Information matrix after Schur complement is 

typically dense 

Kalman filter, 
Extended Kalman Filter


