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Nov 22, 24, 29, | Advanced Topics: Metric-Semantic Einal proiect
Dec 1 Understanding and Learning inal projec
Guest Lect d
Dec 3, 6, 8 uest Lectures an Final project
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Today

e Recap: pose graph optimization +
landmark-based SLAM

e Factor Graphs

e Marginalization
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Pose Graph Optimization
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e Measurements: odometry + loop closures (relative poses)
e Variables: robot poses
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Pose Graph Optimization
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Pose Graph Optimization: Sparsity
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Pose Graph Optimization: Example

https://www.youtube.com/watch?v=KYvOgUB odg



https://www.youtube.com/watch?v=KYvOqUB_odg
https://www.youtube.com/watch?v=KYvOqUB_odg

Landmark-based SLLAM

» Sequence of robot (camera) poses T',T5, ..., T; € SE(d)
» Robot measures the relative pose between T; and T, (odometry)

» Robot measures the environment (e.g., point landmarks p, € R
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courtesy of Michael Kaess

e Measurements: odometry + measurements of (projection,
range, position, or others) of external landmarks
¢ Variables: robot poses and landmark positions



Landmark-based SLAM: Sparsity
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—xample of Hessian (sparsity) in BA
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Landmark-based SLAM: Example

https://www.youtube.com/watch?v=0dJ042prg_M



https://www.youtube.com/watch?v=OdJ042prg_M
https://www.youtube.com/watch?v=OdJ042prg_M

Some terminology

sensor SLAM
front-end back-end  oqtimate

: data association:
- short-term (feature tracklng)
- long-term (loop closure)

MAP is maximum a posteriori estimation
(MLE if no prior is available [“uninformative” prior])

courtesy of Cadenaet al.
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Other SLAM Problems

e Consider a visual-SLAM problem where we
also want to estimate the camera calibration:

P1,. P2

K?

Time 1

Problem: the projective measurements depend on (i) a pose, (ii) a 3D
point, and (iii) the unknown calibration. We can no longer use a standard
graph representation where measurements are (pairwise) edges



A General Model: Factor Graphs

e Bipartite graph describing measurements and variables

Factor Graph
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Factor Graph: Example

B Factors

[courtesy of Cadena et al.]

Fig. 3: SLAM as a factor graph: Blue circles denote robot poses at
consecutive time steps (x1,x2,...), green circles denote landmark positions
(I1,12,...), red circle denotes the variable associated with the intrinsic
calibration parameters (K). Factors are shown as black squares: the label
“u” marks factors corresponding to odometry constraints, “v”’ marks factors
corresponding to camera observations, “c” denotes loop closures, and “p”

denotes prior factors.



Factor Graph: Sparsity

s

e Sparsity is dictated by
topology of the tfactor graph:
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» Normal equations: (J' 27 'J)d = -J"'S 'r



What if we only care about subset of variables”?

» Normal equations: (J' 27 1J)d = -J"'21r

e \What if we only want to compute a subset of variables”?

» J=[J, J, ie,partial derivatives w.r.t. poses and w.r.t. landmarks

» Information matrix (LHS) blocks

Block structure JI'y-13, 1 Je1g, [H | H —‘
in the Information  J ' X 71J = ’ ’ e _. T p!
J'e, 1 3 e LHm | H||J
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The Schur Complement (Linear Algebra Perspective)

Consider the following linear system with a symmetric coefficient matrix
(doesn’t have to be symmetric)

s o) =[]

If Cisinvertible, pre-multiplying LHS/RHS by

I —-BC!
0 I

(i.e., subtracting BC ! x second equation from the first one) results in

{A—Bc—lBT O}F]_FN—BD41
B' Cl| |yl z

Can solve the smaller system (A — BC 'B")x = w — BC !z for x

We have thus eliminated v from the linear system

If needed, v can be recovered by back-substituting x

A — BC'B iscalled the Schur complement of block C

vV v v Y



The Schur Complement Trick in BA / landmark-based SLAM

vV v. v v Y

Exploit the unique sparsity pattern of the information matrix to solve
normal equations efficiently

Normal equations (J'£71J)d = —J "2~ !rin block form

pr le dp bp
H, | H| |d b,

Schur complement of the map (H;;) block
(Hpp, — HpH, 'H])) dy, = b, — Hy H, 'b,

Schur complement may add non-zero off-diagonal blocks to H,,

H, is block-diagonal — easy to compute the Schur complement

# of landmarks > # of poses — much smaller system

We can first solve the reduced system for d, ising sparse Cholesky/QR
And then recover d, by back-substitution

Hd = b — H,d,

Once again, H; is block-diagonal — easy to solve



The Schur Complement (Probabilistic Perspective)

Review: Canonical Parametrization of Gaussians

N (u,X) can also be parametrized in terms of

® Information (precision) matrix A £ X!
® Information vectorn £ X7y
We write N ! (n,A) = N (,2)

A B
> Suppose p(x,y) = N_l( [VZV] ’ [BT C] )
+o00

» One can marginalize out y to obtain p(x) = / p(x,y) dy

— OO

» Marginal distribution for p(x) = N/} <w ~BC 'z, A - BC‘lBT)

Schur complement




Schur Complement & Marginalization

» Many times we may wish to forget/eliminate unimportant variables (to
focus resources on what matters to us, reduce size of linear system, save
memory, etc)

» How to eliminate (forget) some variables “without” loss of information?

X Naively discarding variables and their measurements — loss of information

v Proper way: Marginalize them out



Schur Complement & Marginalization

» What does marginalization/Schur complement do to the sparsity pattern
of information matrix?

» Eliminating (marginalizing out) a variable creates non-zero off-diagonals
(called fill-in) in the information matrix between all of its “neighbours” (i.e.,
those variables that had a non-zero off-diagonal with the eliminated
variable in the information matrix)

» In graph terms, elimination creates a clique between the neighbours of the
eliminated node

-~ Loss of sparsity!



Marginalization:

Credit: Eustice et al.



Marginalization: Example 2
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Smoothing and Filtering

MAP or Full smoothing (estimate entire trajectory and map)
» Many variables but .
» Information matrix J'X7'J is sparse

Fixed-lag smoothing (estimate only
variables in a time window) A
» Use Schur complement to marginalize 7 =
out old states (hence variables) ol X
» Information matrix after Schur A4
complement is

Filtering (estimate only current pose and Kalman filter, |
landmarks) Extended Kalman Filter

» Use Schur complement to marginalize out
ALL old states (hence few variables)

» Information matrix after Schur complement is
typically dense



