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Fig. 2. Human ear (taken with permission from Encyclopaedia Britannica 2001).
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Next Steps

DATE

LECTURE

FINAL PROJECT STAGE

8-Nov Advanced topic: Beyond cameras
10-Nov Advanced topic: 3D reconstruction Project discussion
12-Nov Advanced topic: Overview of open problems
in robot perception and SLAM
15-Nov Advanced topic: Robust estimation
17-Nov Advanced topic: Robust estimation Team check-in (on demand)
19-Nov Advanced topic: Graph Neural Networks
22-Nov Advanced topic: Graph Neural Networks
24-Nov Advanced topic: Graph Neural Networks Team check-in
THANKSGIVING
29-Nov Guest speaker: Autonomous drones (Skydio)
1-Dec Guest speaker: ML uncertainty and verification Team check-in
3-Dec Final presentations (Survey & System)
6-Dec Final presentations (System & Research)
8-Dec Final presentations (System & Research)

November 10th:
final project
open house and
decisions



Big Picture
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Big Picture
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Previously on VNAV: Visual Odometry

Visual odometry (VO): motion estimation estimation
based on cameras (monocular, stereo, RGB-D, ...)

* fea
e fea

® MO

'ime 0O Time

ure matching tends to fail during fast motion
ure-less frames

no VO only estimates motion up to scale



Beyond Cameras

How to get scale and improve robustness”?
add more sensors!

» wheel
odometry

» GPS

» Lidar

nertial

Measurement

» Event Cameras



VIO: Visual-Inertial Odometry

e (a.k.a. visual-inertial navigation, VIN)

On-Manifold Preintegration for Real-Time
Visual-Inertial Odometry

Christian Forster, Luca Carlone, Frank Dellaert, Davide Scaramuzza

Abstract—Current approaches for visual-inertial odometry
(VIO) are able to attain highly accurate state estimation via
nonlinear optimization. However, real-time optimization quickly
becomes infeasible as the trajectory grows over time; this problem
is further emphasized by the fact that inertial measurements
come at high rate, hence leading to fast growth of the number
of variables in the optimization. In this paper, we address this
issue by preintegrating inertial measurements between selected
keyframes into single relative motion constraints. Our first
contribution is a preintegration theory that properly addresses
the manifold structure of the rotation group. We formally discuss
the generative measurement model as well as the nature of the
rotation noise and derive the expression for the maximum a
posteriori state estimator. Qur theoretical development enables
the computation of all necessary Jacobians for the optimization
and a-posteriori bias correction in analytic form. The second
contribution is to show that the preintegrated IMU model can be
seamlessly integrated into a visual-inertial pipeline under the uni-
fying framework of factor graphs. This enables the application of
incremental-smoothing algorithms and the use of a structureless
model for visual measurements, which avoids optimizing over the
3D points, further accelerating the computation. We perform an
extensive evaluation of our monocular VIO pipeline on real and
simulated datasets. The results confirm that our modelling effort
leads to accurate state estimation in real-time, outperforming
state-of-the-art approaches.

of monocular vision and gravity observable [1] and provides
robust and accurate inter-frame motion estimates. Applications
of VIO range from autonomous navigation in GPS-denied
environments, to 3D reconstruction, and augmented reality.

The existing literature on VIO imposes a trade-off between
accuracy and computational efficiency (a detailed review is
given in Section II). On the one hand, filtering approaches
enable fast inference, but their accuracy is deteriorated by the
accumulation of linearization errors. On the other hand, full
smoothing approaches, based on nonlinear optimization, are
accurate, but computationally demanding. Fixed-lag smooth-
ing offers a compromise between accuracy for efficiency;
however, it is not clear how to set the length of the estimation
window so to guarantee a given level of performance.

In this work we show that it is possible to overcome
this trade-off. We design a VIO system that enables fast
incremental smoothing and computes the optimal maximum
a posteriori (MAP) estimate in real time. An overview of our
approach is given in Section IV.

The first step towards this goal is the development of a novel
preintegration theory. The use of preintegrated IMU measure-
ments was first proposed in [2] and consists of combining

More resources:

Visual-Inertial Navigation:
Challenges and Applications

IROS 2019 Full-day Workshop: November 8, 2019, Macau, China

https://udel.edu/~ghuang/iros19-vins-workshop/


https://udel.edu/~ghuang/iros19-vins-workshop/
https://udel.edu/~ghuang/iros19-vins-workshop/

Visual-Inertial Navigation (VIN
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Visual-Inertial Odometry

« » 20-120Hz

At
<+<— 100-800Hz

| imh da:ta | imQ dafa




Visual-Inertial Odometry

MLE/MAP Estimator

x

If t>1

: Feature Fiathu.re/ Triangutlate Normalize i . T
detection HIEE _mg p?ln & scale 4 t

tracking

undistort/

calibrate '
Estimate Recover
Essential Bl O state

Matrix B MU Factor
c
&\
e@(;

B vision Factor

(5-point +
RANSAC)

/

Camera factors Imu factors

mln 51 Y I|wk r Tz,pk)||2 + Z ||rimu(1—%711i+17,vi7,vi+17 bi7 bi+1)||2
pk,k 1,. N k=11€Cs i=1,...,Nc—1

Need to include velocities and IMU biases in the state ...



Visual-Inertial Odometry

< » 20-120Hz

At
<+<— 100-800Hz

| imh da:ta | | | | irﬁu déta |

- Fixed-lag smoother: estimate a fixed window of recent
states from time k-T, k-T+1, .. k (sliding window)



MAP Estimation

IMU
TR

" /
CAM

Challenges:

e IMU measurements arrive at high-rate (~200Hz) $ IMU preintegration

e camera observes hundreds of landmarks per frame g» structureless
L , vision factors

e need to solve optimization problem quickly



IMU Preintegration

Key idea: integrate IMU measurements between frames

many measurements & states

Zigr = f(xi,zip1) +e
IMU

original model

Zitl,i4+2 — f(Tig1,Tiq2) + €
IMU _ ) .
Zitr; = [f(@j-1,35) +e IMU rate (~200Hz) ZZ-H J
I | | | | | | I | | | | | | | | I ]
[+ttt [ttt t t T T[] t >
frame rate frame rate frame rate ime

(~20Hz) (~20Hz) (~20Hz)



IMU Preintegration

Standard integration Preintegration

A

Rj = Rz y Exp (wi,i+15t) s Exp ('wj_l,jdt)

l \ rotatioln rate

Initial rotation

AR;; = Exp (w;,i+10t) - - - Exp (w;—1,;0t)

measurements

Carlone, Kira, Beall, Indelman, Dellaert, Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors, ICRA’14.
Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation, RSS’15 (best paper ﬁnalist)1 7
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Fig. 2. Human ear (taken with permission from Encyclopaedia Britannica 2001).
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MAP Estimation

IMU
TR

" /
CAM

Challenges:

e IMU measurements arrive at high-rate (~200Hz) $ IMU preintegration

e camera observes hundreds of landmarks per frame g» structureless
L , vision factors

e need to solve optimization problem quickly



IMU Preintegration

[

[

o8

/

After 10 seconds, original
problem has ~104 states

After 10 seconds,
preintegrated problem
has ~102 states

On-Manifold Preintegration for Real-Time
Visual-Inertial Odometry

Christian Forster, Luca Carlone, Frank Dellaert, Davide Scaramuzza



Structureless Vision Model

Marginalization

of 3D landmarks o«

Schur complement

Schur complement trick:
e solve for each landmark separately
e substitute back in the optimization

Further reduction of the number
of variables in the optimization!

Carlone, Alcantarilla, Chiu, Zsolt, Dellaert, Mining structure fragments for smart bundle adjustment, BMVC’14.

21



Visual-Inertial Odometry
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in GTSAM Others: OpenVINS, VINS-mono,
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[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TRO 2017]



Engineered Solutions / Applications
Skydio R de | Google Tango

e

Oculus Rift Goggles

Pikachu cp31

Navion Chip
2017 23


http://navion.mit.edu/
http://navion.mit.edu/

All sensors

Optimize entire history
(full smoothing)

Latency:
>200ms

Loop closures: error
remains bounded

Camera & IMU

Typically optimize
over receding horizon

Latency:
<o0ms

No loop closures: error
accumulates over time

24



Observability

Cases Number of Solutions
Rotation around 2 or more axes
Varying Acceleration Unique Solution
n; =5, N>2;n; >6, VN
Rotation around a single axis
Varying Acceleration Two Solutions
n=5 N22;ni 26 vV N: # points
Rotation around 1 or more axes
Varying Acceleration Two Solutions
n; — 4, N 2 2 L .
Rotation around 2 or more axes Ni = #lmages
Constant and non null Acceleration Two Solutions in Wh|Ch
n¢=4,5, NZQ; ’I’L,L'Zﬁ, VN . ('
Rotation around a single axis Infinite Solutions pOIHt |
Constant Acceleration '
No rotation Infinite Solutions IS Observed
Vnz-, VN
Null Acceleration Infinite Solutions
‘v’nz-, VN
Any Motion Infinite Solutions
n; §3, ‘V’N;n¢:4,5, N =1

Agostino Martinelli. Closed-form solution of visual-inertial structure from motion. Interna-
tional Journal of Computer Vision, Springer Verlag, 2013. <hal-00905881>



Visual-Inertial Odometry
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Fig. 2. Human ear (taken with permission from Encyclopaedia Britannica 2001).

- the semicircular canals measure rotational movements
- and the otoliths measure linear accelerations



Beyond Cameras

» wheel

odometry
» GPS
» [Inertial
Measurement 830g
Jnit (IMU)
» Event Cameras

8 W 2.0 W 0.3W ~1W




Lidar Odometry & Lidar SLAM

(%]

DARPA Subterranean Challenge, in collaboration with JPL




Feature-based Lidar Odometry

Time O

Time t

Time 1 Time t-1

-~ - -
-y -
N




Feature-based Lidar Odometry

1me 0 Time 1 Timet1 Mel

Registration. compute relative

DOSe between scans:
- use descriptors for matching
- compute relative pose



Feature-based Lidar Odometry

Time O

Time 1

Registration. compute relative
pose between scans:
- extract features & descriptors

- use descriptors for matching

- compute relative pose



Feature-based Lidar Odometry

1me 0 Time 1 Timet1 Mel

min
ReSO(3)

teRr?
Registration. compute relative
pose between scans:

- extract features & descriptors

- use descriptors for matching
- compute relative pose



Feature-based Lidar Odometry
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[Zhang and Singh: LOAM: Lidar Odometry and Mapping in Real-time, 2014]



Dense Lidar Odometry

Time O

Time 1

terative Closest Point (ICP)

e Alternative to feature-based approaches
e Simultaneous Pose and Correspondences



terative Closest Point (ICP)

N
 Observations: pZy 2 P = (Rpas DI
. teR? =1

Easy to
compute
alignment
given =
ground-truth
correspondences

Easy to

compute
correspondences
given
ground-truth
alignment




terative Closest Point (ICP)

|ICP algorithm: given initial guess, pertorm the following:

1. Establish correspondences: associate to each point in
Cloud 1 the closest point in Cloud 2

2. Compute relative pose given correspondences
(e.g., using Horn’s or Arun’s method)

3. Transform point cloud and repeat
(stop when alignment does not improve or after max iter.)
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terative Closest Point (ICP)

|ICP algorithm: given initial guess, pertorm the following:

1. Establish correspondences: associate to each point in
Cloud 1 the closest point in Cloud 2

2. Compute relative pose given correspondences
(e.g., using Horn’s or Arun’s method)

3. Transform point cloud and repeat
(stop when alignment does not improve or after max iter.)

ICP

. [courtesy: http://
lterations

www.cS.technion.ac.il/
~Cs236329/tutorials/ICP.pdf]




terative Closest Point (IC

oeKd-tree spatial subdivision

P): [ssues and Extensions

NEEERN

Extensions  eDifferent error metrics .
(e.g., point to plane) NS
*Reject outliers / LSS
Initial guess 1 Initial guess 2
convergence S
[courtesy: http://

www.cS.technion.ac.il/
~Cs236329/tutorials/ICP.pdf]




|ICP-based SLAM: Failure Mode

DARPA Subterranean Challenge, in collaboration with JPL



Beyond Cameras

» wheel
odometry

» GPS

» Lidar

» [Inertial

Measurement

Jnit (IMU

» Event Cameras B VY 2o W 0.3W ~1TW

Event-based Vision: A Survey

Guillermo Gallego, Tobi Delbriick, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi,
Stefan Leutenegger, Andrew J. Davison, J6rg Conradt, Kostas Daniilidis, Davide Scaramuzza




Event-based Cameras

eSpeed of robot is constrained by speed at which it
can sense (and compute)

eCommon cameras: 20-120fps  frame next frame
—_— > ltme
0 A

ecvent-based cameras (e.qg.,
Dynamic Vision Sensor, DVS) |
- Temporal resolution: 1 ys o me
- High dynamic range: 120 dB ovent:
- Low power: 20 m\W
- Cost: 2,500 EUR

events stream

d
<t, (x,y),sign (E log(I;(x, y))>>



Event-based Cameras

o

:*iamuzza et al. 2014: Neuromorphic camera



Event-based Cameras for SLAM

& C N\

VINS-Mono

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza Ultimate SLAM? Combining
Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios R-AL 2018.




Fvent-based Cameras for SLAM

I

' University of
5 Zurich™

-y o]
”» '/

F .
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e
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. O

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza Ultimate SLAM? Combining
Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios R-AL 2018.
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