16.485: VNAV - Visual Navigation
for Autonomous Vehicles

Luca Carlone

|||i|- Lecture 27: Advanced lopics: Q«AERO o

Dense 3D Reconstruction



Big Picture

Trajectory Planning

el ' desired
: 'trajectory control robot’s
Goal - inputs state
Path Tre:;ue.cto'ry C Controller Robot
planning optimization

map and current

robot state 301~ Estimator

(e.g., Visual
Odometry)

Sensors
(e.g., cameras)

SLAM
(backend)
(e.g., pose

graph
optimization)

Loop closure
detection
(e.q., place
recognition)




Big Picture

Trajectory Planning

el ' desired
: 'trajectory control robot’s
Goal - inputs state
Path Trgje.cto'ry C Controller Robot
planning optimization

map and current

robot state =301 Estimator

(e.g., Visual
Odometry)

Sensors
(e.g., cameras)

SLAM
(backend)
(e.g., pose

graph
optimization)

Loop closure
detection
(e.q., place
recognition)

Dense 3D
reconstruction

oday!



Today

Multi-View Stereo: A

| Tutonal
e Dense Reconstruction 2015 Hton

Yasutaka Furukawa
Washington University in St. Louis
furukawa®©@wustl.edu

- (SOme) MUHI-VIGW StereO Carlos Hernandez

Google Inc.
carloshernandez@google.com

- 3D representations

- Depth fusion

® F| N al thoug htS ElasticFusion: Dense SLAM Without A Pose Graph

Thomas Whelan*, Stefan Leutenegger*, Renato F. Salas-Moreno', Ben Glocker' and Andrew J. Davison*
*Dyson Robotics Laboratory at Imperial College, Department of Computing, Imperial College London, UK
TDepanment of Computing, Imperial College London, UK

{t.whelan, s.leutenegger, r.salas-morenol0,b.glocker,a.davison}@imperial.ac.uk

2016

KinectFusion: Real-Time Dense Surface Mapping and Tracking*

Richard A. Newcombe Shahram |zadi Otmar Hilliges David Molyneaux David Kim
Imperial College London Microsoft Research Microsoft Research Microsoft Re§earc?h Microsoft Res.earc.h VOXblOX: Incremental 3D Euclidean Signed Distance Fields fOl'
Lancaster University Newcastle University .
Andrew J. Davison Pushmeet Kohli Jamie Shotton Steve Hodges Andrew Fitzgibbon On-Board MAV Planning
Imperial College London Microsoft Research Microsoft Research Microsoft Research Microsoft Research

Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto
Autonomous Systems Lab, ETH Ziirich

Abstract— Micro Aerial Vehicles (MAVs) that operate in
unstructured, unexplored environments require fast and flexible
local planning, which can replan when new parts of the map are

explored. Trajectory optimization methods fulfill these needs,
but require obstacle distance information, which can be given
by Euclidean Signed Distance Fields (ESDFs).

We propose a method to incrementally build ESDFs from
Truncated Signed Distance Fields (TSDFs), a common implicit
surface representation used in computer graphics and vision.
TSDFs are fast to build and smooth out sensor noise over
many observations, and are designed to produce surface meshes.
Meshes allow human operators to get a better assessment of
the robot’s environment, and set high-level mission goals.

Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison
is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).
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Geometric Primitives

Point, lines, planes

(a) Raw data map (using a high-accuracy range finder)

[Thrun et al. :
2004] (b) Planes, extracted from the map using EM

[Lu et al. 2015]
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Object-based Maps

Input Normal Map

[Salas-
Moreno et al,
2014]

Predicted Normal Map Real-Time
Object-Level Reconstruction
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Volumetric Methods: Voxels/Octrees

Dataset: EuRoC
Voxel Size: 0.20 m
Color By: Normals
Playback: 10x

[Oleynikova, ICRA17] w
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but require obstacle distance information, which can be given
by Euclidean Signed Distance Fields (ESDFs).

We propose a method to incrementally build ESDFs from
Truncated Signed Distance Fields (TSDFs), a common implicit
surface representation used in computer graphics and vision.
TSDFs are fast to build and smooth out sensor noise over
many observations, and are designed to produce surface meshes.
Meshes allow human operators to get a better assessment of
the robot’s environment, and set high-level mission goals.

Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison
is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).




Multi-view Stereo

From previous lectures: we know how to use SLAM to
get a good estimate of the poses of the cameras

'ime 0O Time 1

[courtesy of N. Snavely] Stereo Multi-view stereo



Multi-view Stereo

Towards Internet-scale
Multi-view Stereo

CVPR 2010
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Multi-view Stereo

The Visual Turing Test for Scene Reconstruction

Supplementary Video

Qi Shan' Riley Adams'  Brian Curless’
Y

Yasutaka Furukawa® Steve Seitz™

+University of Washington *Google

3DV 2013



Multi-view Stereo
Patch-based
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Figure 2. Definition of a patch (left) and of the images associated
with it (right). See text for the details.

Estimate normal and center of patch to maximize
photometric consistency:

Projection
To camera

C(p) = p(L(Om(2), L)

Example of matching score:
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| \ o E
Matching Image  Rectangular 3D point
Score Intensity Patch

[Furukawa and Ponce, “Accurate, Dense, and Robust Multi-View Stereopsis”, 2007] 15



Multi-view Stereo

Enforcing regularity: Markov Random Fields
Find depth kp of point “p” such that point is photo-consistent and
depth changes smoothly..

E({kp}) =) ®(kp) + > U(kpk

,kq)
/ (p,q)EN \

Unary potentials Pairwise potentials
(similar to previous slides)
¢(k, = d) = min(7,,1 — C(p,d))

U(ky = di, kg = da) = min(7p, |d1 — da|)

Depth is typically discretized
before solving..

16



How Accurate is Multi-view Stereo?

laser scan = Space Carving Results: African Violet

@

" O y Y . ‘11l"

%1
v uhw“’/ ) &‘4 |

Input Image (1 of 45) Reconstruction

*®

Reconstruction Reconstruction

Space Carving Results: Hand

Source: S. Seitz

Comparison: 90% of points

within 0.128 m of laser scan
(building height 51m) -

Input Image
(1 of 100)

M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz, Multi-View Stereo for < Y
Community Photo Collections, ICCV 2007 Views of Reconstruction

Many methods: volumetric stereo, space carving,
Shape from silhouettes, carved visual hull 17
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Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison
is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).




Surfels

triangular rendering primitive surfel

ElasticFusion: Dense SLAM Without A Pose Graph

Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno, Ben Glocker, Andrew Davison

Imperial College London

note: based on RGB-D (contrarily to multi-view stereo)



A Gentle Start: 2D Occupancy Grid Maps

[1=free [ = obstacle = unknown
,5iif
NS
ANA
AMNN
NN
AR
3N
e discretize the environment into cells
e Each cell holds real number [0,1], representing

the probabllity of the cell being occupied

Map posterior p(ﬂf | 214, T1:t)
Unknown KNnown sensor

Map Depth and robot poses



A Gentle Start: 2D Occupancy Grid Maps

Probability
p(m ‘ Zl;t,CCl;t) » p(mz ‘ 21ty 1171:15) of cell
l being occupied
Binary value
(free/occupied)
..p-‘/f
Bayes rule (omitting “x” for simplicity): ééé”
p(Zt+1 ‘ mi)p(mi ‘ Zl;t) \E\:R
pim;[z.41) = RANNS
p(m;) \ NN
Uninformative \ T
Prior
Log-odd representation is typically
used to avoid numerical instabilities

p(mi ‘ <1t xl:t) » p(mi | Zl:t,xlzt)
) lt,i — lOg

1 _p(mz ‘ Z1:ts L1t 1 —p(mi ‘ Zl:t:xlzt)



Truncated Signed Distance Function (SDF)

e Store distance to
nearest obstacle
(with sign)

e Only update around
obstacle itself

Sensor

(implicit surface model)

Update rule:

d(x,p,s) = [p—x|sign((p—x)e(p—s)) ()
Weonst (X, P) = 1 (2)
W;(x)D;(x) + w(x, p)d(x,
Diii(x.p) — (x)D;(x) + w(x, p)d(x, p) 3) |
Wi(x) +w(x, p) [Curless and Levoy, “A Volumetric
Wir1(x,p) = min (W’L(X) + w(x, p), Wmax) 4) Method for Building Complex Models

from Range Images”, 2007]



Kinect Fusion (2011)

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram lzadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University
5 University of Toronto

GPU, memory ...



Kintinuous (2013)

007402578

Campued mash ud b §
Sce rumder § 51

s mas [Kaess et al. 2013]

GPU, bounded memory ...



VoxBlox (2017)

Building 3

Voxblox:

D Signed Distance
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From Voxels to Meshes

Marching cubes

https://www.youtube.com/watch?v=B_xk71YopsA



https://www.youtube.com/watch?v=B_xk71YopsA
https://www.youtube.com/watch?v=B_xk71YopsA

New Representations: Neural Implicit Surfaces

Use neural networks to define an implicit surface

representation

(X,y,2)

o o o * Decision
___ boundary
e of implicit
. . surface
e o =] =]
*» SDF >0
o o ® e
(=] =]
@ SDF <0

Signed distance
To obstacles

DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation, Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe,
and Steven Lovegrove, CVPR 2019.

()



Neural Radiance Fields or NeRF

Use neural networks to regress not a signed distance
function, but color -> rendering

NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall” Pratul P. Srinivasan” Matthew Tancik” Jonathan T. Barron Ravi Ramamoorthi Ren Ng
UC Berkeley UC Berkeley UC Berkeley Google Research UC San Diego UC Berkeley

* Denotes Equal Contribution




Neural Volume Rendering

Frank Dellaert Publications Teaching Talks Blog Posts

NeRF Explosion 2020

@ Published: December 16, 2020

Frank Dellaert

Professor, Robotics &
Computer Vision

@ Atlanta, GA
® Georgia Tech

&= Email

&4 Twitter

M@ LinkedIn

€) Github

© YouTube

= Google Scholar

© ORCID

The result that got me hooked on wanting to know everything about NeRF :-).
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Robot Perception or Computer Vision?

Computer vision

..'adayona
cluster with 500
compute cores” _ &=

50-100ms latency,
embedded,
Incremental

No longer a dichotomy for many vision applications!



Robot Perception or Computer Vision?
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Robot Perception or Computer Vision?

Perception serves action (and vice-versal!)
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But why so many steps?
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