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Today and Next Lecture

e Robust estimation:

- Motivations: outliers, data association

- Formulations: M-estimation & Maximum Consensus

e Solvers for robust estimation:
- (RANSAC)
- lteratively Reweighted Least Squares (IRLS)
- Max-mixture
- Switchable constraints
- @Graduated non-convexity
- Others: BnB, SDP relaxations, graph-theoretic pruning



Some problems in VNAV

Point cloud registration

Relative pose measurement
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Outliers in 2-view geometry

Some correspondences are wrong

with RANSAC

Outliers: uninformative/incorrect measurements

RANSAC to the rescue but only applies to problems

(i) where estimation can be performed from a small set of measurements
(i) for which a fast minimal solver is available

(iif) for which there are not many outliers



outliers: completely incorrect
measurements
(Perceptual Aliasing)

5 outliers




Outliers in pose graph optimization
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Outliers in visual SLAM
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Outliers in landmark-based SLAM
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Data association: association of a measurement with the
variables being measured:

Ykt = hi (T}, 1) + €

f

Measurement robot pose landmark

Qutliers are typically the result of incorrect data association



So far in VNAV

When Gaussian measurement noise, (MLE) gives:
N Measurements/data
2 —/
| min r°(Yi, x)
Estimate - T 1 \
Residual

Example: Point Cloud Registration
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Example: Pose Graph Optimization
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Relative pose measurement



Why do least squares fail with outliers?

Least squares problems penalize large residuals a LOT (due to square)

- Least squares find an estimate x to minimize large residuals

Example:
* Xprye = 0
 Measurement model: y; = x + gaussian noiseof u=0,0 =1
y, = x + gaussian noise of y=0,0 =1
Y3 = 2x + gaussian noise of u=0,0 =1
- Observed measurements: y; = y, =0, y, = 10

Least squares opt. solutionis x = 3.33 # x,_, = 0!
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Robust Estimation: M-Estimation

Use robust loss function that down-weighs the influence of outliers

min 3 plr(z. )

1EM

N/

\ / | Huber Lorenzian Geman-McClure
. | .
) .

Tukey  Andrew’s sine Truncated
Least Squares

. among many others

v
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“Maximum likelihood-type” estimators ¢ rele dool
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Robust Estimation: Maximum Consensus
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Function counts number of outliers

Minimize nr. of outliers = maximize nr. of inliers

min |[O| s.t. r(x,y,-)ﬁ&, Vie H\0
OCMH
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Robust Estimation: Hardness

Inapproximability result: solving robust estimation problems to
optimality is intractable for common choices of |0ss functions

Theorem (Chin et al. ‘18, Antonante et al. ‘19)
. Let O™ be the true number of outliers.

. Lete = p1< ‘ ﬂ‘ ) where p; is a polynomial in number of measurements.

. Let py( ‘ M ‘ ) another polynomial.
Then:

No quasi-polynomial algorithm can reject less than p( ‘ /A ‘ )| O * | measurements.

\A slower than polynomial \\A no constant

faster than exponential

approximation
factor

Theorem applies to both:

: th o) = r* if rel0;g]
Truncated least squares: ){Iéll{% Z p r(x, yi) A W if rele, + o]

=W/A

Maximum consensus: @néifl% O] 5.t r(x, yi) <¢ Vie MO
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Today and Next Lecture

e Robust estimation:
- Motivations: outliers, data association
- Formulations: M-estimation & Maximum Consensus

e Solvers for robust estimation:
(RANSAC)

lteratively Reweighted Least Squares (IRLS)

Max-mixture

- Switchable constraints
- Graduated non-convexity
- Others: BnB, SDP relaxations, graph-theoretic pruning



RANSAC

min |O| s.t.
OCH

RANSAC samples small set of measurements to
build an estimate of x and hope that it minimizes the cost

Nr. lterations in RANSAC increases exponentially in the percentage
of outliers and the number of points used by the minimal solver
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Iteratively Reweighted Least Squares (IRLS)

GTSAM Robust Noise Model

Fan Jiang', Yetong Zhang!

February 2020

1 Introduction

In gtsam, we solve the problem of reducing the error of a factor graph. For each factor i, we
have observation function h;, and the measurement value z;. Then the measurement error
vector e; 1s defined as

e; = hi(x;) — 2
Then, our objective of reducing the error of the factor graph becomes

min errgpqpn(x) = min E erri(e;)
X ' x
i
Normally, we are concerned with the least square problem, where the error function for each
factor is defined as

1
err(e) = Sl

where X si the covaraince matrix associated with the measurement. Then, our objective
becomes:

. 1 2
n;mZ §||hz(rz) — zills,
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Iteratively Reweighted Least Squares (IRLS)
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" Tukey  Andrew’s sine Truncated
Least Squares

Start from initial guess and at each iteration convert
the problem into a weighted nonlinear least squares:




Iteratively Reweighted Least Squares (IRLS)

Loss functions

Geman-McClure | 'Tukey: | Truncated
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[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, [JCV’96.] 18



Robust Estimation with Max-Mixture

Inference on networks of mixtures for robust robot mapping

Edwin Olson
Computer Science and Engineering,
University of Michigan,
2260 Hayward Street,
Ann Arbor, Michigan
Email: ebolson @umich.edu

Abstract— The central challenge in robotic mapping is ob-
taining reliable data associations (or “loop closures”): state-of-
the-art inference algorithms can fail catastrophically if even
one erroneous loop closure is incorporated into the map.
Consequently, much work has been done to push error rates
closer to zero. However, a long-lived or multi-robot system will
still encounter errors, leading to system failure.

We propose a fundamentally different approach: allow richer
error models that allow the probability of a failure to be
explicitly modeled. In other words, we optimize the map while
simultaneously determining which loop closures are correct
from within a single integrated Bayesian framework. Unlike
earlier multiple-hypothesis approaches, our approach avoids
exponential memory complexity and is fast enough for real-
time performance.

We show that the proposed method not only allows loop
closing errors to be automatically identified, but also that in
extreme cases, the “front-end” loop-validation systems can be
unnecessary. We demonstrate our system both on standard
benchmarks and on the real-world datasets that motivated this
work.

I. INTRODUCTION

Robot mapping problems are often formulated as an infer-
ence problem on a factor graph: variable nodes (representing
the location of robots or other landmarks in the environment)
are related through factor nodes, which encode geometric
relationships between those nodes. Recent Simultaneous
Localization and Mapping (SLAM) algorithms can rapidly
find maximum likelihood solutions for maps, exploiting

both fundamental improvements in the understanding of

Pratik Agarwal
Computer Science and Engineering,
University of Michigan,

2260 Hayward Street,

Ann Arbor, Michigan
Email: pratikag@umich.edu

Fig. 1. Recovering a map in the presence of erroneous loop closures. We
evaluated the robustness of our method by adding erroneous loop closures
to the Intel data set. The top row reflects the posterior map as computed by
a state-of-the-art sparse Cholesky factorization method with 1, 10, and 100
bad loop closures. The bottom row shows the posterior map for the same
data set using our proposed max mixture method. While earlier methods
produce maps with increasing global map deformation, our proposed method
is essentially unaffected by the presence of the incorrect loop closures.

tifying and validating loop closures and constructing a factor
graph; the back-end then performs inference (often maximum
likelihood) on this factor graph. In most of the literature, it is
assumed that the loop closures found by the front-end have
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Robust Estimation with Max-Mixture

Mathematical Model

= We can express a multi-modal belief
by a sum of Gaussians

1
p(z | x) = neXp(__eTszez])

g

1 7
p(Z ‘ X) — Zwknk exp(——ewkﬂwkewk)
k
Sum of Gaussians with k modes

[slides courtesy of Cyrill Stachniss]

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
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Robust Estimation with Max-Mixture

Problem

= During error minimization, we consider
the negative log likelihood

1
— log p(Z | X) — §eg;ﬂmez] — logn

U

—logp(z | x) = —10g »  wrny exp(_§eijk i3Sy
k

The log cannot be moved inside the sum!

[slides courtesy of Cyrill Stachniss]

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012] o



Robust Estimation with Max-Mixture

Max-Mixture Approximation

= [nstead of computing the sum of
Gaussians at X, compute the
maximum of the Gaussians

1 7
p(z|x) = 3wy exp(—5el; Rijeij,)
k
1 1
~ m]?xwknkexp(—iez‘jk ijkeijk)

[slides courtesy of Cyrill Stachniss]

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
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Robust Estimation with Max-Mixture

Max-Mixture Approximation

Original bi-modal mixture Max-mixture Sum-mixture
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[slides courtesy of Cyrill Stachniss]

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
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Robust Estimation with Max-Mixture

Log Likelihood Of The Max-
Mixture Formulation

= The log can be moved inside the max
operator

1 7
p(Z‘X) = maxwknkeXp(_Eeijk ’L]keZ]k)

g

k

1 7

ogp(z | x) ~ max—Ze;; Dij eij, +10g(weny)
1
or: —logp(z|x) =~ mkln Eeg;kﬂijkeijk — log(wgmg)

[slides courtesy of Cyrill Stachniss]

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012] o4



Robust Estimation with Max-Mixture

= Easy to integrate in the optimizer:
1. Evaluate all k components

2. Select the component with the
maximum log likelihood

3. Perform the optimization as before
using only the max components
(as a single Gaussian)

[slides courtesy of Cyrill Stachniss]

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
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Robust Estimation with Max-Mixture

Performance (1 outlier)

Performance (Gauss vs. MM)

Gauss-Newton MM Gauss-Newton

Performance (10 outliers)

Gauss-Newton MM Gauss-Newton

Performance (100 outliers)

slides courtesy of Cyrill Stachniss Gauss-Newton MM Gauss-Newton

E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012



Today and Next Lecture

e Robust estimation:
- Motivations: outliers, data association

- Formulations: M-estimation & Maximum Consensus

e Solvers for robust estimation:
- (RANSACQC)
- lteratively Reweighted Least Squares (IRLS)
- Max-mixture
- Switchable constraints

- Others: BnB, SDP relaxations, graph-theoretic pruning



Robust Estimation with Switchable Constraints

To appear in Proc. of IEEE Conf. on Intelligent Robots and Systems (IROS), 2012. DOI: not yet available
(©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Switchable Constraints for Robust Pose Graph SLAM

Niko Siinderhauf and Peter Protzel
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Fig. 1: Exemplary results of the proposed robust SLAM back-end on the synthetic Manhattan world dataset [10] that contains 3500 poses
and 2099 loop closures. In these examples, we corrupted the dataset by introducing 100 additional wrong loop closures that might have
been produced due to data association errors (e.g. failed place recognition) in the SLAM front-end. Current back-ends like g2o [6] are not
able to converge to a correct solution (shown in blue) despite being supported by so called robust cost functions like the Huber function
[1]. Our robust solution (red) that uses switchable constraints correctly discards the wrong loop closure candidates (visible as grey links)
during the optimization and converges to a correct solution. For comparison, the ground truth is plotted in green. Our robust back-end was
able to cope with 1000 outliers on a number of 2D and 3D datasets. Notice that the outlier loop closure constraints have been added
following different policies (from left to right: random, local, random group, local group) which are explained later on.

Robust Map Optimization
using Dynamic Covariance Scaling

Pratik Agarwal, Gian Diego Tipaldi, Luciano Spinello, Cyrill Stachniss, and Wolfram Burgard

Abstract—Developing the perfect SLAM front-end that pro- Standard Switchable Our
duces graphs which are free of outliers is generally impossible due Least-Squares Constraints [8] Method
to perceptual aliasing. Therefore, optimization back-ends need to
be able to deal with outliers resulting from an imperfect front-
end. In this paper, we introduce dynamic covariance scaling, a
novel approach for effective optimization of constraint networks
under the presence of outliers. The key idea is to use a
robust function that generalizes classical gating and dynamically 6.73s (19 iter.) 1.01s (5 iter.)
rejects outliers without compromising convergence speed. We »
implemented and thoroughly evaluated our method on publicly B
available datasets. Compared to recently published state-of-the- BIAZANN;
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Robust Estimation with Switchable Constraints

X*, S* p— a,r;g(rrsl’inz Hf(xz, ui) — Xi+1”§3i
’ ?

Odometry Constraints

+Z H Sij (f(xi7 uij) T xj) ||?\zg
i (1)

Switchable Loop Closure Constraints

Also see: Dynamic Covariance Scaling (DCS), which eliminates
the switch variables, making the optimization more efficient

IN. Sunderhauf and P. Protzel, Switchable Constraints for Robust Pose Graph SLAM, IROS 2012]

[P. Agarwal, G. Tipaldi, L. Spinello, C. Stachniss, W. Burgard: “Robust Map
Optimization Using Dynamic Covariance Scaling”, ICRA 2013.
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Switchable Constraints vs. IRLS
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Fig. 1: Exemplary results of the proposed robust SLAM back-end on the synthetic Manhattan world dataset [10] that contains 3500 poses
and 2099 loop closures. In these examples, we corrupted the dataset by introducing 100 additional wrong loop closures that might have
been produced due to data association errors (e.g. failed place recognition) in the SLAM front-end. Current back-ends like gZo [6] are not
able to converge to a correct solution (shown in blue) despite being supported by so called robust cost functions like the Huber function
[1]. Our robust solution (red) that uses switchable constraints correctly discards the wrong loop closure candidates (visible as grey links)
during the optimization and converges to a correct solution. For comparison, the ground truth is plotted in green. Our robust back-end was
able to cope with 1000 outliers on a number of 2D and 3D datasets. Notice that the outlier loop closure constraints have been added
following different policies (from left to right: random, local, random group, local group) which are explained later on.

[N. Sunderhauf and P. Protzel, Switchable Constraints for Robust Pose Graph SLAM, IROS 2012]



Robust Estimation with Switchable Constraints

Switchable Constraints Max-Mixtures RRR Best
RMSE [m] Time [s] RMSE [m] Time [s] RMSE [m] Time [s]
Dataset median mean  max mean median mean = max mean median mean = max mean
Manhattan 1.16 1.36 2642 9.7 1.18 1.49 38.28 139 7.38 1164 3740 9.8 SC
City 0.063 0.063 0.063 38.8 0.058 0.251 64.18 47.7 0.94 1.60 5.11 523.3 SC
Ring - 4.39 - 0.07 - 15.06 - 0.12 - 5.21 - 0.19 SC
RingCity - 1.82 - 0.41 - 41.13 - 2.0 - 4.18 - 54.0 SC
Bovisa-04 - 2.39 - 1.1 - 11.81 - 1.4 - 3.01 - 59 SC
Bovisa-06 - 9.38 - 1.1 - 7.67 - 1.4 - 3.95 - 2.9 RRR
Bicocca 2.73 2.67 2.98 0.8 3.93 3.92 5.59 1.1 1.10 1.64 2.96 2.29 RRR

[N. Sunderhauf and P. Protzel, Switchable constraints vs. max-mixture models vs. RRR - A
comparison of three approaches to robust pose graph SLAM, ICRA 2013]

Fig. 2. Estimated trajectories for the Bovisa-04 (left), Bovisa-06 (middle),
and one of the Bicocca (right) datasets. Colors indicate the used method:

switchable constraints (red), max-mixtures (blue), RRR (green). The tra-
jectories are plotted in their optimal alignment with the ground truth (not
shown) according to the get ATE () error function from the Rawseeds

toolkit.
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Graduated non-convexity

First insight: equivalence between M-estimation and
formulations with switchable constraints:

INA LA

/; /) 7 ; - /; /} - /} /} ; B /R - ; B
(a) TLS (b) MC (c) GM (d) TB (e) L1 (f) Huber () Adaptive

Black-Rangarajan duality:

Theorem 1 [Informal - Black,

Rangarajan, 1996] \We can argefgm Z p(ri(x,yi)) Robust
rewrite common robust loss reM function
functions by adding auxiliary ‘

variables @; (one for each arg min Z 0,12 )+ @, (f;) “Outier
measurement) r€X,0,€[0,1] /e ryg process

[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, [JCV’96.]

[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection.
RAL 2020. (best paper in robot vision at ICRA 2020)]




Graduated non-convexity

Second insight: alternation-based solver

arg min Z 0;||rs (x, y:)||*+(1 — ;)¢ z \ /
TEX, ieM * *

OzE{O,l},VZ -€ 0

Potential approach: Alternating Minimization (Block Coordinate

e Variable Update: fix weights 6’l-, optimize variable x

v becomes a weighted least squares problem ISSUE: approach easily
gets stuck in local minima

Q Weight Update: fix variable x, optimize 0,

cost

v splits into scalar optimization problems
v can be solved in closed form

33



Graduated non-convexity

Second insight: alternation-based solver

arg min Z 97;||r7;(a:,yz-)||2—|—(1 — 97;)52 % \ /
TEX, e M * *

QiE{O,l},V’I; -€ 0 ¢

Outliers

.. Key idea to avoid getting
Q stuck in local minima:
e start from a convex
approximation of the cost
function

e gradually increase non- | ,n,ie

Cost function

convexity until you recover

Residual

[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, [JCV’96.]
[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection.

RAL 2020. (best paper in robot vision at ICRA 2020)] 34



Graduated non-convexity

P (Ir (.’B » Yi ) )
Truncated

Least

Squares %
Loss |
-€ 0 €

r(z,y:))

convex zE./\/l Graduated

cost (hard Non-Convexity
to

optimize) »

[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, [JCV’96.]
[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection
RAL 2020. (best paper in robot vision at ICRA 2020)]

cost

cost

Non-

cost

cost

cost
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Graduated non-convexity

best paper in robot vision at ICRA 2020
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Graduated non-convexity algorithm

. ) 2
argmin »  0;]|ri(x, y;) | >+(1 — 6;)¢ Surrogate function with parameter 4

reX, :
6,c{0.1},vi *€M

arg min Z 9?;||ri(a:,yi)\|2+u(1 _ Hi)EQ
916[0,1],\72

0 Initialization: set u — 0

a Set all weights 6. = 1

@Variable Update (weighted least square)

e While cost function decrease

© Weight Update (closed-form)

@ Variable Update (weighted least square) p— 400

© Increase Non-Convexity: u, = 6 - y,_1,6 > 1

[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier
rejection. RAL 2020. (best paper in robot vision at ICRA 2020)] 37



Graduated non-convexity for SLAM

GNC for Simultaneous Localization and Mapping

Robot Trajectory Reconstructed Map Top View
I pv 100
- 80 -
50,
60 -
ERR 40!
) S
s0lL" 20
100 ;
‘ P 80 )
50 <~ 80
P 20l
m -20 m
-40 +

-40 -20 0 20 40 60 80

Problem: estimate trajectory given motion estimates and loop cloSuyes.

Inputs Loop closures are contaminated with outliers SPA RLL/E

best paper in robot vision at ICRA 2020



Pose Graph Optimization Results
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[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global
outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)]



Pose Graph Optimization Results
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[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global
outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)]



Other applications of GNC

outliers outliers outliers

No need for initial guess (as opposed to local solvers)
No need for minimal solver (as opposed to RANSAQC)
GNC implementation available in Matlab and GTSAM

[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal
solvers to global outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)]



Today and Next Lecture

e Robust estimation:
- Motivations: outliers, data association

- Formulations: M-estimation & Maximum Consensus

e Solvers for robust estimation:
- (RANSACQC)
- lteratively Reweighted Least Squares (IRLS)
- Max-mixture
- Switchable constraints
- @Graduated non-convexity

- Others: BnB, SDP relaxations, graph-theoretic pruning



onvex relaxations, graph theory

Pairwise Consistent Measurement Set Maximization
for Robust Multi-robot Map Merging

Joshua G. Mangelson, Derrick Dominic, Ryan M. Eustice, and Ram Vasudevan

lection of inter-map loop closures in multi-robot simultaneous
localization and mapping (SLAM). Existing robust SLAM “ 4 _eF
methods assume a good initialization or an ‘“odometry back- -

bone” to classify inlier and outlier loop closures. In the
multi-robot case, these assumptions do not always hold. This
paper presents an algorithm called Pairwise Consistency Max-
imization (PCM) that estimates the largest pairwise internally
consistent set of measurements. Finding the largest pairwise
internally consistent set can be transformed into an instance
of the maximum clique problem from graph theory, and by
leveraging the associated literature it can be solved in real-
time. This paper evaluates how well PCM approximates the C

Abstract—This paper reports on a method for robust se- AO"‘O"‘Q"‘O"‘O | P J—
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combinatorial gold standard using simulated data. It also E==QQ%[%E

evaluates the performance of PCM on synthetic and real-world .%=====% K ’ ’
data sets in comparison with DCS, SCGP, and RANSAC, and [ |mm [ | [ 3 ) ) / 3 .
shows that PCM significantly outperforms these methods. EQ],QHH5== R R R S

Certifiable Outlier-Robust Geometric Perception:
Exact Semidefinite Relaxations and Scalable Global Optimization

Heng Yang, Student Member, IEEE, and Luca Carlone, Senior Member, IEEE

Abstract—We propose the first general and scalable framework to design certifiable algorithms for robust geometric perception in the
presence of outliers. Our first contribution is to show that estimation using common robust costs, such as truncated least squares (TLS),
maximum consensus, Geman-McClure, Tukey’s biweight, among others, can be reformulated as polynomial optimization problems
(POPs). By focusing on the TLS cost, our second contribution is to exploit sparsity in the POP and propose a sparse semidefinite
programming (SDP) relaxation that is much smaller than the standard Lasserre’s hierarchy while preserving exactness, i.e., the SDP
recovers the optimizer of the nonconvex POP with an optimality certificate. Our third contribution is to solve the SDP relaxations at
an unprecedented scale and accuracy by presenting STRIDE, a solver that blends global descent on the convex SDP with fast local
search on the nonconvex POP. Our fourth contribution is an evaluation of the proposed framework on six geometric perception problems
including single and multiple rotation averaging, point cloud and mesh registration, absolute pose estimation, and category-level object
pose and shape estimation. Our experiments demonstrate that (i) our sparse SDP relaxation is exact with up to 60%—90% outliers
across applications; (ii) while still being far from real-time, STRIDE is up to 100 times faster than existing SDP solvers on medium-scale
problems, and is the only solver that can solve large-scale SDPs with hundreds of thousands of constraints to high accuracy; (iiij) STRIDE
provides a safeguard to existing fast heuristics for robust estimation (e.g., RANSAC or Graduated Non-Convexity), i.e., it certifies global
optimality if the heuristic estimates are optimal, or detects and allows escaping local optima when the heuristic estimates are suboptimal.

Index Terms—certifiable algorithms, outlier-robust estimation, robust fitting, robust estimation, polynomial optimization, semidefinite
programming, global optimization, moment/sums-of-squares relaxation, large-scale convex optimization
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