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Today and Next Lecture

• Robust estimation:  
- Motivations: outliers, data association 
- Formulations: M-estimation & Maximum Consensus 

• Solvers for robust estimation: 
- (RANSAC) 
- Iteratively Reweighted Least Squares (IRLS) 
- Max-mixture 
- Switchable constraints 
- Graduated non-convexity 
- Others: BnB, SDP relaxations, graph-theoretic pruning



Some problems in VNAV
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Point cloud registration Two-view geometry

Pose graph optimization

Camera 1 Camera 2 𝑅,  𝑡

�̄�𝑡,𝑡−1

𝑇𝑡 𝑇𝑡−1

Relative pose measurement

Pose at time  
 (to be estimated)

𝑡 − 1

: rotation 
: translation

𝑅
𝑡

Landmark-based SLAM



Outliers in 2-view geometry
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without 
RANSAC

with RANSAC

Some correspondences are wrong 
                                   (outliers)

Outliers: uninformative/incorrect measurements 

RANSAC to the rescue but only applies to problems  
(i) where estimation can be performed from a small set of measurements 
(ii) for which a fast minimal solver is available  
(iii) for which there are not many outliers  



Outliers in pose graph optimization

x4x3

x5
x6x7

x2x1

outliers: completely incorrect 
measurements  

(Perceptual Aliasing)
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0 outliers 5 outliers 20 outliers



Outliers in pose graph optimization
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Outliers in visual SLAM



Outliers in pose graph optimization
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Outliers in lidar-based SLAM



Outliers in landmark-based SLAM
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outliers

Data association: association of a measurement with the  
variables being measured:

Outliers are typically the result of incorrect data association
robot pose landmarkMeasurement



So far in VNAV
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When Gaussian measurement noise, maximum likelihood estimation (MLE) gives:

Estimate

Residual

Measurements/data

Example: Point Cloud Registration

Point clouds (data)Pose

Correspondences between 𝑝𝑖, 𝑝′�𝑗

Relative pose measurement
Poses

Odometry and Loop closures between 𝑇𝑖, 𝑇𝑗

Example: Pose Graph Optimization



Why do least squares fail with outliers?
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Least squares problems penalize large residuals a LOT (due to square)

Least squares find an estimate    to minimize large residuals𝑥

Example:
•
• Measurement model:  
                                           
                                           
• Observed measurements: 

𝑥𝑡𝑟𝑢𝑒 = 0
𝑦1 = 𝑥 + 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 𝑜𝑓 𝜇 = 0, 𝜎 = 1

𝑦2 = 𝑥 + 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 𝑜𝑓 𝜇 = 0, 𝜎 = 1
𝑦3 = 2𝑥 + 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 𝑜𝑓 𝜇 = 0, 𝜎 = 1

𝑦1 = 𝑦2 = 0, 𝑦3 = 10

Least squares opt. solution is 𝑥 = 3.33 ≠ 𝑥𝑡𝑟𝑢𝑒 = 0!



Robust Estimation: M-Estimation
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Huber Lorenzian

Truncated  
Least Squares

Tukey

Geman-McClure

Andrew’s sine

… among many others 

“Maximum likelihood-type” estimators
𝜌(𝑟) = {𝑟2       𝑖𝑓  𝑟 ∈ [0,�̄�]

 �̄�2     𝑖𝑓   𝑟 ∈ [�̄�,   + ∞]

Use robust loss function that down-weighs the influence of outliers



Robust Estimation: Maximum Consensus
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Function counts number of outliers 

Minimize nr. of outliers = maximize nr. of inliers

min
𝒪 ⊆ ℳ

  |𝒪 |     𝑠 . 𝑡 .      𝑟(𝑥, 𝑦𝑖) ≤ �̄�,   ∀ 𝑖 ∈  ℳ\𝒪  



Robust Estimation: Hardness
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Theorem (Chin et al. ‘18, Antonante et al. ‘19) 
• Let  be the true number of outliers. 

• Let , where  is a polynomial in number of measurements.   

• Let  another polynomial.  
Then: 

 
No quasi-polynomial algorithm can reject less than  measurements.

𝒪⋆

𝜖 = 𝑝1( ℳ ) 𝑝1

𝑝2( ℳ )

𝑝2( ℳ ) |𝒪⋆ |

Theorem applies to both:

Truncated least squares: min
𝑥 ∈ 𝒳 ∑

𝑖∈ℳ

𝜌(𝑟(𝑥, 𝑦𝑖)) with

min
𝒪 ⊆ ℳ

  |𝒪 |     𝑠 . 𝑡 .      𝑟(𝑥, 𝑦𝑖) ≤ �̄�,   ∀ 𝑖 ∈  ℳ\𝒪  

slower than polynomial 
faster than exponential

no constant 
approximation 
factor

Maximum consensus:

𝜌(𝑟) = {𝑟2       𝑖𝑓  𝑟 ∈ [0,�̄�]
 �̄�2     𝑖𝑓   𝑟 ∈ [�̄�,   + ∞]

Inapproximability result: solving robust estimation problems to 
optimality is intractable for common choices of loss functions
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RANSAC
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RANSAC samples small set of measurements to  
build an estimate of x and hope that it minimizes the cost

min
𝒪 ⊆ ℳ

  |𝒪 |     𝑠 . 𝑡 .      𝑟(𝑥, 𝑦𝑖) ≤ �̄�,   ∀ 𝑖 ∈  ℳ\𝒪  

Nr. Iterations in RANSAC increases exponentially in the percentage 
of outliers and the number of points used by the minimal solver
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Iteratively Reweighted Least Squares (IRLS)
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Huber Lorenzian

Truncated  
Least Squares

Tukey

Geman-McClure

Andrew’s sine

Iteratively Reweighted Least Squares (IRLS)

Start from initial guess and at each iteration convert  
the problem into a weighted nonlinear least squares:



Iteratively Reweighted Least Squares (IRLS)
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Huber Truncated  
Least Squares

TukeyGeman-McClure

Huber
Truncated  

Least Squares
Tukey

Geman-McClure

Loss functions

Quadratic

Quadratic

[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, IJCV’96.]

~Influence functions
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Robust Estimation with Max-Mixture
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Robust Estimation with Max-Mixture

[slides courtesy of Cyrill Stachniss]
[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
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Robust Estimation with Max-Mixture

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
[slides courtesy of Cyrill Stachniss]
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Robust Estimation with Max-Mixture

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
[slides courtesy of Cyrill Stachniss]
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Robust Estimation with Max-Mixture

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
[slides courtesy of Cyrill Stachniss]
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Robust Estimation with Max-Mixture

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
[slides courtesy of Cyrill Stachniss]
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Robust Estimation with Max-Mixture

[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
[slides courtesy of Cyrill Stachniss]



26

Robust Estimation with Max-Mixture

[slides courtesy of Cyrill Stachniss]
[E. Olson and P. Agarwal, Inference on networks of mixtures for robust robot mapping, RSS 2012]
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Robust Estimation with Switchable Constraints
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Robust Estimation with Switchable Constraints

[N. Sunderhauf and P. Protzel, Switchable Constraints for Robust Pose Graph SLAM, IROS 2012]

Also see: Dynamic Covariance Scaling (DCS), which eliminates  
the switch variables, making the optimization more efficient

[P. Agarwal, G. Tipaldi, L. Spinello, C. Stachniss, W. Burgard: “Robust Map 
Optimization Using Dynamic Covariance Scaling”, ICRA 2013.
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Switchable Constraints vs. IRLS

[N. Sunderhauf and P. Protzel, Switchable Constraints for Robust Pose Graph SLAM, IROS 2012]
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Robust Estimation with Switchable Constraints

[N. Sunderhauf and P. Protzel, Switchable constraints vs. max-mixture models vs. RRR - A 
comparison of three approaches to robust pose graph SLAM, ICRA 2013]
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Graduated non-convexity

“Outlier 
process”

Black-Rangarajan duality:

Theorem 1 [Informal - Black, 
Rangarajan, 1996] We can 
rewrite common robust loss 
functions by adding auxiliary 
variables  (one for each 
measurement)

θi

Robust 
loss 
function

First insight: equivalence between M-estimation and 
formulations with switchable constraints:

[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, IJCV’96.] 
[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection. 
RAL 2020. (best paper in robot vision at ICRA 2020)]



33

Graduated non-convexity
Second insight: alternation-based solver

✓ becomes a weighted least squares problem

✓ splits into scalar optimization problems
✓ can be solved in closed form

a Variable Update: fix weights , optimize variable θi x

Potential approach: Alternating Minimization (Block Coordinate 

b Weight Update: fix variable , optimize x θi

ISSUE: approach easily 
gets stuck in local minima

[https://mit-spark.github.io/GlobalOptimization-ICCV2019/]
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Graduated non-convexity

Outliers

Inliers

Key idea to avoid getting 
stuck in local minima: 
• start from a convex 

approximation of the cost 
function 

• gradually increase non-
convexity until you recover 

[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, IJCV’96.] 
[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection. 
RAL 2020. (best paper in robot vision at ICRA 2020)]

Second insight: alternation-based solver
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Graduated non-convexity

Graduated  
Non-Convexity

Truncated 
Least 

Squares 
Loss

Non-
convex 

cost (hard 
to 

optimize)

[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, IJCV’96.] 
[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection. 
RAL 2020. (best paper in robot vision at ICRA 2020)]
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Graduated non-convexity

[Black, Rangarajan, “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision, IJCV’96.] 
[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection. 
RAL 2020. (best paper in robot vision at ICRA 2020)]
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Graduated non-convexity algorithm

Graduated Non-Convexity (GNC) Intuition

1 Initialization: set μ → 0

c Increase Non-Convexity: μt = δ ⋅ μt−1, δ > 1

b Variable Update (weighted least square)

a Weight Update (closed-form)

While cost function decrease2

a Set all weights θi = 1

b Variable Update (weighted least square)

⋮

[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier 
rejection. RAL 2020. (best paper in robot vision at ICRA 2020)]

Surrogate function with parameter μ
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GNC for Simultaneous Localization and Mapping

Problem: estimate trajectory given motion estimates and loop closures. 
Loop closures are contaminated with outliers

[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global 
outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)]

Graduated non-convexity for SLAM



Problem: estimate trajectory given motion estimates and loop closures. 
Loop closures are contaminated with outliers

[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global 
outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)]

Pose Graph Optimization Results

CSAIL



[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global 
outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)]

Pose Graph Optimization Results

INTEL



[Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal 
solvers to global outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)]

Other applications of GNC

No need for initial guess (as opposed to local solvers)

No need for minimal solver (as opposed to RANSAC)

GNC implementation available in Matlab and GTSAM

Mesh Registration Shape Alignment SLAM

80
up to

outliers

70
up to

outliers

90
up to

outliers
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Convex relaxations, graph theory


