16.485: VNAV al Navigation
for Autonc& ‘Vehicles

Rajat Talak
Lecture 31-32.5: Deep Learning Architectures on 3D Data



VNAV thus far ...

3D Geometric Reconstruction

Trajectory Planning ,
P e e S e s S e e ' desired

s itrajectory control robot’s
Goal ; inputs state

Fath Trajectory Controller Robot k.

; planning optimization
map and current
robot state :
>30Hz Estimator
(e.g., Visual Sensors

i Odometry) (e.g., cameras)

b

i SLAM Loop closure
Dense 3D 4 ~1Hz) I (e.g. pose detection
reconstruction graph (e.g., place

optimization) recognition)




VNAV thus far ...

3D Geometric Reconstruction

Mesh

33

Point Cloud

Voxel Vespa et al. “Efficient Octree-based Volumetric SLAM Supporting
Signed-Distance and Occupancy Mapping” RAL 2017
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“seeing is not understanding”
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Is this enough? ... No!!

Detect objects and
humans

Need to go beyond geometric reconstruction to 3D scene understanding



Is this enough? ... No!!

Detect objects and Learn interaction between human, object,
humans -

7 ) scene
LYES ’ 1
] i / - Person reading a book
. ? - Laptop is on the desk

[
" -

-
l &
L

Need to go beyond geometric reconstruction to 3D scene understanding
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Need to go beyond geometric reconstruction to 3D scene understanding
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Is this enough? ... No!!

Detect objects and Learn interaction between human, object,
humans -

®,® scene
i\w. |‘ 1 .
Interact with humans Q\ i / - Person reading a book

- Surprise

- Human intent and emotions Identify and work with deformable objects

-
Scene dynamics J

, - Distinguish table cloth from the table
; - “Spread the table cloth on the table™f
- Falling object

Need to go beyond geometric reconstruction to 3D scene understanding



Is this enough? ... No!!

Detect objects and Learn interaction between human, object,

humans
scene

: - Person reading a book
Interact with humans

- Surprise
- Human intent and emotions Identify and work with deformable objects

- Distinguish table cloth from the table
Scene dynamics - “Spread the table cloth on the table™f

- Falling object

Need for Semantic Understanding of the 3D Scene



Semantic Understanding

No formal definition



Semantic Understanding

No formal definition

“... we consider semantics in a robotics context to be about the meaning of things;
the meaning of places, objects, other entities occupying the environment, or even
language used in communicating between robots and humans or between robots
themselves.”

Garg et al. “Semantics for Robotic Mapping, Perception and Interaction: A Survey” 2021



Semantic Understanding

No formal definition

“... we consider semantics in a robotics context to be about the meaning of things;
the meaning of places, objects, other entities occupying the environment, or even

language used in communicating between robots and humans or between robots
themselves.”

Garg et al. “Semantics for Robotic Mapping, Perception and Interaction: A Survey” 2021

“... the research focus has shifted from reconstructing the 3D scene geometry to
enhancing the 3D maps with semantic information about scene components.”

Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari
“SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences” 2021



Research Activity

2
79
It is a dark blue couch in the

1st Workshop on Language for 3D Scenes
at CVPR 2021

This is a bed with blue sheets near
the desk.

3D Scene Understanding for Vision,
Graphics, and Robotics at CVPR 2021

3rd ScanNet Indoor Scene Understanding
Challenge at CVPR 2021




Research Activity

Facebook Al Habitat Challenge

Given an object, the goal is to move

and find an instance of it in the scene.

Depth

GPS &

Compass
S P

Observations
Find stool

~

Object Goal Nav Task:

Vs

Photo-realistic 3D scene

™

Action | TURN_LEFT

Your Agentﬂ

source : https://aihabitat.org/challenge/2021/



https://aihabitat.org/challenge/2021/

Semantic Understanding in Images

Semantic Object Instance
Segmentation Detection Segmentation

Classification

GRASS, CAT, DOG, DOG, CAT  DOG, DOG, CAT
" U TREE, SKY P Y,
h'd Y _ _
No spatial extent No objects, just pixels Multiple Object hisimage ' G0 picdoin

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Semantic Understanding in Images

(a) image

(c) instance segmentation (d) panoptic segmentation

Source: Kirillov et al. “Panoptic Segmentation” 2019



Semantic Understanding in Images

Recently, panoptic segmentation
approaches have been used in
volumetric mapping pipelines.

Schmid et al. “Panoptic Multi-TSDFs: a Flexible Representation
for Online Multi-resolution Volumetric Mapping and Long-term
Dynamic Scene Consistency” 2021

(a) image

(c) instance segmentation (d) panoptic segmentation

Source: Kirillov et al. “Panoptic Segmentation” 2019



Semantic Understanding in Images

woman
/\‘\‘ -
shorts

standing is behind —> man

l

jumping over

v

fire hydrant

v

yellow

Scene Graph

Legend: objects attributes relationships

Source: Rajay Krishna et al. “Visual Genome: Connecting Language and Vision using Crowdsourced Dense Image Annotations” 2016



Semantic Understanding in Images

State-of-the-art approaches use
Deep Learning based architectures



Semantic Understanding on 3D Data

Point Clouds, Voxels, Meshes

Mesh

Point Cloud

Voxel Vespa et al. “Efficient Octree-based Volumetric SLAM Supporting
Signed-Distance and Occupancy Mapping” RAL 2017



Semantic Understanding on 3D Data

7]
<
& g
y RGB Q
k] 4.2,7.2,0,-10, 55) =
24x1024 =
&)
W camera
objt: occluding W
obj2:occluded i bed
Moven
W vase
sink
) W bowl @
Q“ M bench 5
class: bed M clock t5)
color: blue, brown M book =
material: wood, fabric B toilet °
s / area: 2.2 m2. :
(0.8,03,-0.1) % 0.85 shape: prism rectangular M couch
action affordance: siton, layon [l chair
M refrigerator
M microwave
W potted plant
M dining table
class: living room
(16,0.0,00) shape: prism rectangular 2]
size: (6.5, 4.9, 3.5) E
illumination: [18 ceiling lights, 1<)
3 spotlights, living room &
11 windows, bedroom A4
2lampe] M bathroom
M hallway
v M dining room
M residential building
— attributes
— same parent building
same parent space 0
on relationship R=!
order s=]
. . =
~ relative magnitude volume 5
M

floor number: 3
function: residential
shape: prism rectangular
area: 13.8m2

Armeni et al. “3D Scene Graph: A Structure for Unified
Semantics, 3D Space, and Camera” 2019

Rosinol et al. “3D Dynamic Scene Graphs: Actionable Spatial

Graphs

Layer 5:

Buildings

Layer 4:

Rooms

Layer 3:

Places and

Structures

Layer 2:

Objects and Clak

Agents (G#mm»
et

{GT: eft)
Layer 1: (T ndag o) &

Metric-Semantic
Mesh

standing on

standing on aitached to
(GT: attached )

(GT: standing on) / (GT: attached 1)

" 4
floor
(GT: floor)

-

Wald et al. “Learning 3D Semantic Scene Graphs
Perception with Places, Objects, and Humans” 2020 from 3D Indoor Reconstruction” 2020



Semantic Understanding on 3D Data

How do we develop Deep Learning Architectures on
Voxels, Point Clouds, Meshes, and Graphs?



Plan for the three lectures ...

s

eep Learning Architectures on 3D Data

e Motivation: Semantic Understanding

e Recap: Machine Learning, Deep Learning on Image < 3_/
Learning on Scene Graphs

N | Architect for 3D Dat
¢ eural Architectures for ad e Scene Graphs for Semantic Understanding

o Voxels, Point clouds, Meshes
e Graph Neural Networks

e Datasets and Software e Limitations

< 2.% e Node and Relationship Prediction
eometric Deep Learning

e Unifying view of developing architectures on all data
e Symmetry
e Equivariance, Invariance, Convolutions

e Unified Blueprint
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s

eep Learning Architectures on 3D Data
e Motivation: Semantic Understanding
e Recap: Machine Learning, Deep Learning on Image

e Neural Architectures for 3D Data

o Voxels, Point clouds, Meshes

e Datasets and Software

Key ideas and heuristics for
Deep Learning architectures on
Voxels, Point Clouds, Meshes



Fi

rst Part

s

eep Learning Architectures on 3D Data
e Motivation: Semantic Understanding
e Recap: Machine Learning, Deep Learning on Image

e Neural Architectures for 3D Data

o Voxels, Point clouds, Meshes

e Datasets and Software

Background ...

Key ideas and heuristics for
Deep Learning architectures on
Voxels, Point Clouds, Meshes



A Quick Recap:
The Machine Learning Problem



The Machine Learning Problem

. J\/"
Data {(2;,y:)};—1 @i €X y; €Y
Truth f* X — Y

Model f, . X Y 6€@©

Goal: find & € © such that f* ~ fo



The Machine Learning Problem

Loss Function .Y xY — R Wy, y') = lly —v'lI5
l(y,y") = —ylog(y))

Empirical Loss Minimization
N

S Ui, folei))

=1

1
min Ly = —
XSS N

Optimization Method
Gradient descent 9t+1 — 9t — Cxta[:g/a@

learning rate



The Goal

Come up with a model fg : X — Ysuchthat f* ~ f,



Terminology

Come up with a model fg : X — Ysuchthat f* ~ f,

Architecture
A={fg: X =Y |0 €0}

Model
fg for a particular choice of 9



A Quick Recap:
Deep Learning Architectures on Images



Semantic Understanding on Images

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, DOG, DOG, CAT  DOG, DOG, CAT
" RS TREE, SKY UERS Y,
h'd Y _ _
No spatial extent No objects, just pixels Multiple Object hisimage ' G0 i doman

X, Y?

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Progress on Object Detection (20 years)

| Softmax |
Object Detection Milestones |+ Multiresolution Detection __Fcrooo |
/  *Hard-negative Mining fc7 | FC 4096 |
SSD (W. Liu Retina-Net fce | FC 4096 |
) et al-16) (T. Y. Lin et al-17)
/ + Bounding Box Regression YOLO (J. Redmon I Pool I
DPM etal-16,17)
HOG Det. (P. Felzenszwalb et al-08, 10) One-stage convs
(N. Dalal et al-05) datect
VJ Det. etector conv4
P. Viola et al-01 /" + AlexNet »
(/ ) / s 2014 2015 2016 2017 2018 2019 | Pool |
> ... conv3
2008 0E A0 2008 uLe 2014 2015 2016 2017 2018 2019 | — |

Traditional Detection RCNN\ \ Two-stage conv2
Methods /,’ (R. Girshick et al-14)  spppet detector s
Wisdom of the cold weapon /! : (g
P / Deep Learning based Fast RCNN [ Input |
/7 Detection Methods (R. Girshick-15)

Technical aesthetics of GPU Faster RCNN

7 Pyramid Networks
' (S: Ren et al-15) (T. Y. Lin et al-17) AlexNet

p + Multi-reference Detection
/ (Anchors Boxes) /

+ Feature Fusion

State-of-the-art models = composition of convolution, pooling, unpooling, fully connected layers

Zou et al. “Object Detection in 20 Years: A Survey” 2019



Convolutional Neural Networks for Classification

Fully Connected

Image Maps
Input

)

Convolutions
Subsamplmg

LeCun et al “Gradient-based Learning Applied to Document Recognition” 1998

State-of-the-art models = composition of convolution, pooling, unpooling, fully connected layers



Convolutional Neural Networks for Segmentation

{ 224x224 224x224

Unpooling
\Enpooling
\Linpooling )
\ano_ol-ing
b

Noh et al “Learning Deconvolution Network for Semantic Segmentation” CVPR 2015



ImageNet Large Scale Visual Recognition Challenge

30

25

20

15

10

28.2

shallow

2010
Lin et al

2011

Sanchez &
Perronnin

152 layers

152 layers

152 layers

:‘V——VV"---.

16.4

2012

Krizhevsky et al
(AlexNet)

2013

Zeiler &
Fergus

2014 2014

Simonyan &  Szegedy et al
Zisserman (VGG) (GoogLeNet)

19 layers| |22 layers, :

2015

He et al
(ResNet)

2016

Shao et al

‘,._,_,,,_,

A

5.1
3.6 3 23 .
H B =

2017 Human
Hu et al Russakovsky et al
(SENet)

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



ImageNet Large Scale Visual Recognition Challenge

30 282
25
20
15

10

2010
Lin et al

25.8

2011

Sanchez &
Perronnin

16.4

2012

Krizhevsky et al
(AlexNet)

“Revolution of Depth”

11.7 |19 layers

22 layers,

7.3 67
s [ sion l .
0

2013

Zeiler &
Fergus

2014

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021

2014

Simonyan & Szegedy et a
Zisserman (VGG) (GooglLeNet

152 layers| [152 layers| |152 layers
A A &
3.6
H = =
2015 2016 2017
| He et al Shao et al Hu et al
(ResNet) (SENet)

5.1

Human
Russakovsky et al



Residual Connections

Deeper models were harder
to optimize

He et al. “Deep Residual Learning for Image Recognition” 2015

20r 20
56-layer

g ~
5 &
-
E 10y g 10 20‘1ayer
en
£ 56-layer 2
s 8
I -
B

20-layer

0

00 5. 6 0 1

1 5 6

: itelr.3 (le4)4 : iter? (1e4)4
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error.



Residual Connections

X
Y
weight layer
]—"(x) | relu «
weight layer identity
F(x) +x

He et al. “Deep Residual Learning for Image Recognition” 2015



Residual Connections

weight layer

relu
\ 4

weight layer

X
identity

He et al. “Deep Residual Learning for Image Recognition” 2015

DA LUIIV, L£0O ]

v

3x3 conv, 128

3x3 conv, 128

v

3x3 conv, 128

.....

-

.

3x3 conv, 256

\

3x3 conv, 256

3x3 conv, 256

\

3x3 conv, 256

3x3 conv, 256

v

3x3 conv, 256

3x3 conv, 256

\ 4

3x3 conv, 256




ImageNet Large Scale Visual Recognition Challenge

30 282
25
20
15

10

2010
Lin et al

25.8

2011

Sanchez &
Perronnin

16.4

2012

Krizhevsky et al
(AlexNet)

“Revolution of Depth”

11.7 |19 layers

22 layers,

7.3 67
s [ sion l .
0

2013

Zeiler &
Fergus

2014

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021

2014

Simonyan & Szegedy et a
Zisserman (VGG) (GooglLeNet

152 layers| [152 layers| |152 layers
A A &
3.6
H = =
2015 2016 2017
| He et al Shao et al Hu et al
(ResNet) (SENet)

5.1

Human
Russakovsky et al



Takeaways ...

Basic building blocks:
o Convolutions DI s
o Pooling |
o Unpooling e B
o Single and Multi-layer perceptfan
Residual Connections
X

weight layer

Convolution network

Noh et al

X
identity

Unpooling
\Enpoolmg
\Unpooling
~\npooling

e

Learning Deconvolution Network for Semantic Segmentation” CVPR 2015

3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

3x3 conv, 256, /2

333 conv, 256

He et al. “Deep Residual
Learning for Image
Recognition” 2015

3x3 conv, 256
—




Architectures for Learning in 3D

Point Cloud Voxel Mesh



Voxels



Convolutions on Voxel Grids

————— - _‘-‘-‘)
6x6x6 conv
48x13x13x13
Input:
1x30x30x30

3
_=_-..-~—i- -
@ 7

5x5x5 conv
160x5x5x5

7 \
/ \\
/ ke
/
4
/
/
P g
\
\\
4x4x4 conv N P
512x2x2x2 /
\\ V2
rc WLl Class
Layer Scores

Wau et al “3D ShapeNets: A Deep Representation for Volumetric Shapes” CVPR 2015

ccupancy Grid
32x32x32

Conv(32 5,2)
14><14><14

Conv(32,3, 1)+Poo|(2)

.
@ 6><6><6
\ FuII(128) \
Pedestrlan

FuII(K)/Output

Toilet

Naturana and Scherer “VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition” IROS 2015



Limitations

Very high memory
usage

10000

1000

100

MB
10

0.1

Voxel memory usage (V x V x V float32 numbers)

256 512 768 1024

Source: Justin Johnson “Deep Learning for Computer Vision” Michigan University, Fall 2020.

Storing 10243 voxel grid
takes 4GB of memory



L| m |tat|0ns Voxel memory usage (V x V x V float32 numbers)

10000
Very high memory -
usage
100
MB
10
Reported results on
small sized voxel .
. 3 0 256 512 768 1024
grids 32 -
Naturana and Scherer “VoxNet: A 3D Convolutional Neural Source: Justin Johnson “Deep Learning for Computer Vision” Michigan University, Fall 2020.

Network for Real-Time Object Recognition” IROS 2015

Storing 10243 voxel grid
takes 4GB of memory



Octree-based Architectures

Define convolutions on octree

Helps due to sparsity of occupied
regions. But not much!

//\\\ //\\\

01010000 01010000

Source: Riegler et al. “OctNet: Learning Deep 3D

Repor‘ted reSUItS On Voxel grlds Of Representations at High Resolution” 2017
size 256°



Point Clouds

Have more inherent structure than
voxel representation

Representative of the sparse data



Point Clouds



PointNet

The (classification) output should be invariant
to ordering of points in the point cloud.

fHxy, x29,...2n}) = g(h(x1), h(x2), ... h(x,))

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet

The (classification) output should be invariant
to ordering of points in the point cloud.

fHxy, x29,...2n}) = g(h(x1), h(x2), ... h(x,))

/

max pooling

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet

The (classification) output should be invariant
to ordering of points in the point cloud.

fHzy, xo, ... x,}) = max{h(x;), h(x2),... h(z,)}

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet: Basic Operations

MLP + Max Pooling

f{x1,20,...2,}) = max{MLP(x1), MLP(x5),... MLP(z,)}

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet: Basic Operations

Shared weights

MLP + Max Pooling / j \

f{x1,20,...2,}) = max{MLP(x1), MLP(x5),... MLP(z,)}

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet: Basic Operations

Shared weights

MLP + Max Pooling / j \

f{x1,20,...2,}) = max{MLP(x1), MLP(x5),... MLP(z,)}

Regress a Transformation Matrix

MLP
X
1 MAX POOLING reshape to
.CU MLP dxd matrix
2 PR T m—— T
L
— - shared weights




PointNet: Basic Operations

Shared weights

MLP + Max Pooling / j \

f{x1,20,...2,}) = max{MLP(x,), MLP(x5), ... MLP(z,)}

Regress a Transformation Matrix

MLP
L 1 MAX POOLING reshape to
.CU MLP dxd matrix
2 P T m——— T
X
— o shared weights




PointNet Architecture

Composition of these two basic operations:

1. MLP + Max Pooling
2. Regress a Transformation Matrix

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture

input mlp (64,64) feature
transform > > transform

> >

nx64

shared

" input points -
nx3
vy
Y
nx3

pool 1574
nx1024 | |

| global feature

LA
1

mlp
(512,256,k)

v k

.............................................................................................................................................................................................................

matrix
multiply | :

Regresses a transformation matrix and applies it to each input point

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture

input mlp (64,64) feature mlp (64,128,1024) max

mlp
transform > 1 transform . i pool 1554 (512,256 k)

share d nxl1 024 [ |

:, L. | | global feature I

matrix
multiply | :

nx64
y
nx64

" input points -
nx3
Y
\ 4
nx3

Multi-Layer Perceptron (shared weights) to uplift the dimensions

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture

input mlp (64,64) feature mlp (64,128,1024) max mlp
transform > 4 transform = i pool 74 (512,256 k)

nx64
y
nx64

shalred she!red nx1024 | |

B [—I—}_, _.[_I_}_> global feature ﬁ

..............................................................................................................................................................................................

" input points -
nx3
v
\ 4
nx3

matrix
multiply | :

Max Pooling to extract global feature

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture

input mlp (64,64) feature mlp (64,128,1024) max mlp
transform > 5 transform = i pool 1554 (512,256 k)

nx64
y
nx64

shalred she!red nx1024 | |

B [_I_}_’ _.[—I—}_> global feature ﬁ

..........................................................................................................................................................................

" input points -
nx3
b
A /
nx3

matrix
multiply | :

multiply

f({x1, zo, ... 2, }) = max{h(x;), h(xs),... h(z,)}

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture: Segmentation

input mlp (64,64) feature mlp (64,128,1024) max mlp
transform . transform = > pool ;o4 (512,256,k)

> > > >

> >

nx64

NS
shared n = %

| | global feature‘.;(]

......................................................................................................................

" input points -
nx3
vy
A J
nx3

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture: Segmentation

input mlp (64,64) feature mlp (64,128,1024) _—
é’ transform . N transform 5 > pool 024
2 |en e <t <t
; S gk shalred \g i g E shalred nx1024 ll =T |
2 global reature
""" i’,“———----_‘-F__pointfeatures
: ‘ : g
. é — | e |3
Stack mid-level features and nEeEe shared | = shared 2 |5
e &
the global feature e L= E
‘- mlp (512,256,128) mlp (128,m)

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture: Segmentation

input mlp (64,64) feature mlp (64,128,1024) max
E transform . N . transform . * J pool 154
: (98] (28]
*:": S gl sha!red \g i g \g shalred nx1024 ll el |
2 global feature
= —>l_|_!—— —»l_l_}—>
...... é’,—‘——____-—-—P__pointfeaturesw
> > > — g.:
: > > =
- | n|x1088 | & | ‘-
Stack mid-level features and g shared | shared g |5
z e &
the global feature e = 3
mlp (512,256,128) mlp (128,m)

Another MLP to extract the final score for each point



Object Part
ReS u ItS Segmentation
Object Classification
input | #views | accuracy | accuracy
avg. class | overall

SPH [11] mesh - 68.2 -
3DShapeNets [28] | volume 1 77.3 84.7

VoxNet [17] volume 12 83.0 85.9
Subvolume [ 18] volume 20 86.0 89.2

LFD [28] image 10 75.5 -

MVCNN [23] image 80 90.1 -

Ours baseline point - 72.6 774

Ours PointNet point 1 86.2 89.2

Table 1. Classification results on ModelNet40. Our net achieves
state-of-the-art among deep nets on 3D input.

State-of-the-art @2017

Scene
Segmentation

’ table

“‘ll |l

-l h
motorbike F

Input

2.

airplane _ .’

/

skateboard



_ input points

A Limitation of PointNet

input mlp (64,64) feature mlp (64,128,1024) max
transform g o transform . i pool 4y
e =1 by
Z B > (?é shared \g i = \g shalred nx1024 l |
| | global feature
. . Image Maps
Does not extract a sequence of hierarchical nput

features; except a global feature _y
&\D\% \\\\
7 \ o $

Convolutions
Subsampling

mlp
(512,256,k)

ok

Fully Connected



A Limitation of PointNet

input mlp (64,64) feature mlp (64,128,1024) _ mlp
Yé’ transform g 2 transform . i pool 1554 (512,256,k)
‘2 en e NS N
g 5 B shared \g g \g shalred nx1024 | P |
: global feature
. . output scores -
. . Image Maps
Does not extract a sequence of hierarchical nput

features; except a global feature .
Does not take into account the local v 3 & 4

Convolutions Fully Connected

geometry formed by points Subsampling



Point Clouds

PointNet



PointNet++

Uses PointNet module as a

building block

mxd

matrix

multiply

Transforms a set of m points to a
single point with a feature vector

MAX POOLING MILP
1 Xdow —__ F—1xd

shared weights

PointNet module

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++

Extracts hierarchical features by recursively applying PointNet module

MLP

MAX POOLING MILP
1 Xdow —__ F—1xd

mxd

matrix
multiply

shared weights

PointNet module

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++

Sampling

Y B

Samples n’points using farthest point sampling

Grouping

For each of the sampled point, selects K points
using either

—
° K-negrest .ne.ighborg or . sampling &~ pointnet ~ sampling &
e K points within maximum radius of R grouping grouping

PointNet Layer

Applies PointNet-module to each K-grouping of
points and generates a feature vector

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++

Sampling

Y B

Samples n’points using farthest point sampling

Grouping

For each of the sampled point, selects K points
using either

—
° K-negrest .ne.ighborg or . sampling & pointnet ~ sampling &
e K points within maximum radius of R grouping grouping

PointNet Layer

Applies PointNet module to each K-grouping of
points and generates a feature vector

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



P Oi ntN et ++ Looks similar to convolution + pooling?

Sampling

Samples n’points using farthest point sampling

Grouping

For each of the sampled point, selects K points
using either

° K-negrest .ne.ighborg or . sampling &~ pointnet ~ sampling &
e K points within maximum radius of R grouping grouping

Image Maps

PointNet Layer

Applies PointNet-module to each K-grouping of
points and generates a feature vector K "

Convolutions

*
Fully Connected

Subsampling

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Classification and Segmentation

.........................................................................

Hierarchical point set feature learning Segmentation

o - .
interpolate ~ unit interpolate ~ unit

pointnet pointnet
Classification

«
|

:
Il

e
pointnet

&

sampling & = pointnet ~ sampling &
grouping grouping

\ NS )
Y Y

set abstraction set abstraction —_—
pointnet fully connected layers

1“:.
I

]
it

{

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017




PointNet++ for Classification

Hierarchical point set feature learning

Classification

> 8
. . e
sampling & = pointnet ~ sampling & pointnet 8
grouping grouping a
\ 1\ J i
Y Y [3)

set abstraction set abstraction

pointnet fully connected layers

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Classification

Max Pool + MLP on features of
the final layer

Hierarchical point set feature learning

Classification

—_ — —  —

w
(5]
. . e
sampling & = pointnet ~ sampling & pointnet 8
grouping grouping a
\ 1\ Jj i
Y e B

set abstraction set abstraction

pointnet fully connected layers

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Segmentation

—

interpolate unit

! interpolate unit
pointnet pointnet

—

sampling & = pointnet sampling & pointnet
grouping grouping
\ NS )
v - . :
ot abeaction e Need to go back to the original points

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Segmentation

—

interpolate unit

! interpolate ~ unit
pointnet pointnet

—

sampling & pointnet  sampling & pointnet 1. Residual connections
grouping grouping .
\ - I\ o / 2. Interpolation
set abstraction set abstraction

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Segmentation interpolation

residual connections

........................................................................

Hierarchical point set feature learning Segmentation

N »
§ bxo

—

interpolate unit

! interpolate unit
pointnet pointnet

—

sampling & pointnet  sampling & pointnet 1. Residual connections
grouping grouping .
\ - I\ o / 2. Interpolation
set abstraction set abstraction

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



More Details
PointNet++ for Segmentation

These residual connections concatenate features, instead of adding them

.........................................................................................................................................

..........................................................................

Hierarchical point set feature learning Segmentation

unit

! interpolate unit
pointnet pointnet

interpolate

Interpolation

Zz 1w7«( )f(]) 1

wz(x) = d(:c,:cz-)l’

—

sampling & = pointnet ~ sampling & pointnet
grouping grouping f ) (1’) -
I J\ J - L
v o Zi:l w; ()
set abstraction set abstraction

k=3,p=2

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



Non-uniform Point Density

PointNet and PointNet ++

implicitly assumes uniform point
density

- eg k-nearest neighbors in
grouping

— —

pointnet ~ sampling & = pointnet
grouping grouping

Becomes fragile with non-uniform
point density

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



Non-uniform Point Density

PointNet and PointNet ++

implicitly assumes uniform point
density

- eg k-nearest neighbors in
grouping

— —

sampling &~ pointnet ~ sampling & = pointnet
grouping grouping

Becomes fragile with non-uniform
point density

Not an issue on Images or Voxel Grids

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



Fix for Non-uniform Point Density

Multi-scale Multi-resolution
grouping grouping

concat concat

Random Point Dropout at
Training

— —

sampling &~ pointnet ~ sampling & = pointnet
grouping grouping

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++

Multi-scale Multi-resolution
grouping grouping
concat concat
S i
/ /N

Random Point Dropout at
Training

90 ——

85

Accuracy (%)

80

75
1000 800 600 400 200

Number of Points

1024 points 512 points

. u"-

256 points

—e— PointNet vanilla
—=— PointNet vanilla (DP)
—o— Qurs (SSG)

Ours (SSG+DP)
—a— QOurs (MSG+DP)
—a— Ours (MRG+DP)

Ours = PointNet++

128 points

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++

Better Performance than PointNet

Increased Compute Time

—

sampling &~ pointnet ~ sampling & pointnet
grouping grouping

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



Limitations of PointNet++

Does not take into account the local
geometry formed by points

Geometry of hierarchical features
are pre-determined

— —

sampling &~ pointnet ~ sampling & = pointnet
grouping grouping

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



Point Clouds

PointNet EdgeConv

PointNet++

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



EdgeConv: Basic Idea

Form a local graph by

X.
connecting nearby points . / \XO

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



EdgeConv: Basic Idea

connecting nearby points

" X iz -
Form a local graph by /.x\. / B
i X
./ e i
. Ji i

Apply convolution-like operation
on this graph

vi = Ui e holzi,x))

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



EdgeConv: Basic Idea

X o

@’ ® c ¢ OF

F X.I'UO\ / EdgeCony Xj,-3 m 7
orm a local graph by x\. ’ 'Q.
. . i X
connecting nearby points / X X./e ; .
Ji i ij; e

Apply convolution-like operation
on this graph

vi = Ui e holzi, x;))

Q invariant function like max or sum



EdgeConv: Basic Idea

X o

@' @ _c. € @7

X EdgeCony iz iz V2
Form a local graph by . \x/ ety /eijil
Ji : j

connecting nearby points
iis Ji1

X. X.
Jis Ji5

Apply convolution-like operation
on this graph

vi = Ui e holzi, x;))

Q invariant function like max or sum



EdgeConv: Basic Idea

X X,

../i.? . e ei'., . Ji2

F in3.\ / EdgeConvy Xj,-3 m y
orm a local graph by x\. vﬁ.
. ; i ¢ 74
connecting nearby points / : X ./e , ®
i i ij; 2

: O
Apply convolution-like operation e i
on this graph
/
vi = Ui e holzi, x;))
Nearby: with respect to node feature
vectors ]
invariant function like max or sum



EdgeConv: Basic Idea

[(]"L( ony 13
Form a local graph by \ /
connecting nearby points /. \0 .//. \o

PointNet++ EdgeConv
Connects k-NN from position of Connects k-NN from feature vectors
points of points

Does this at each layer



EdgeConv Architecture

Step 1: Form a local graph by connecting nearby points with respect to ,CIZ‘Z

Step 2: Update feature vectors

/
i < T; = Uji(ij)eE h@(%‘a %‘)




EdgeConv Architecture

er 1: Form a local graph by connecting nearby points with respect to QEZ

Step 2: Update feature vectors

/
i < T; = Uji(ij)eE h@(%’, fj)

U iterate Need to compute a new graph at each stage



EdgeConv Architecture

er 1: Form a local graph by connecting nearby points with respect to {L‘Z

Step 2: Update feature vectors

/
i < T; = Uji(ij)eE h@(%, %‘)

Example

U iterate h@(flfi, CU]) — U(@a ' (xj — xl) T @bx’t)




Feature Space and Semantically Similar Structures

 F ok F
¥k F

layer

far

near

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



Feature Space and Semantically Similar Structures

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



Feature Space and Semantically Similar Structures

near © S far

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



Feature Space and Semantically Similar Structures

near far

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



Limitations of EdgeConv

Computationally more expensive
than PointNet and PointNet++

X. X.

.-’i.? . e e. ‘ Ji2

. X. ij;
EdgeConv Ji3 m‘ 2

—

e,
i

./ e / “ s
- X, < S ¢, X,

Jig Uis Ji1
X

Ji5 Jis



Limitations of EdgeConv

Computationally more expensive
than PointNet and PointNet++

Is this really a convolution

operation?

X

/\ /\/\.

=Uj.ier holzi,z;)



Point Clouds

PointNet EdgeConv

PointNet++ KPConv



Point Clouds

PointNet EdgeConv

PointNet++ KRG o=

Convolution based architectures for
Point Cloud



Convolution




We only have points on X ]:’ — { (xi, fz) }Z



We only have points on X



We only have points on X




Convolution on Point Clouds?

(F*g)(x Zfz

We only have points on X




Convolution on Point Clouds?

(F*g)(x Zf g(x; — x)

€N (z)

<‘ neighborhood of x

We only have points on X ]7 — { (xz., fz) }Z




Convolution on Point Clouds

(F*g)(x Zf g(x; — x)

€N (z)

<‘ neighborhood of x

We only have points on X ]:’ — { (:Bi) fz) }Z




Convolution on Point Clouds

Point Cloud
(F *g)(x Z fi-g(x; —x)
i€N(z) F = {(:E’L) fz)}z



Convolution on Point Clouds

Point Cloud
(F * g)( Z fi-g(x; — )
i€N(z) k F = {(xu fz)}z

J

Neighborhood Kernel



Convolution on Point Clouds

(F*g Z f g v _x) Point Cloud
i€ N(a) k F = {(3727 fz)}z

J

Neighborhood Kernel

Many choices of kernel functions in the literature.



Kernel Point Convolution (KPConv)

g(z) = > hiz,z)W;

1<k<K -

Filter Values T e & >
. e <
Kernel Points S
A specific choice of kernel function <

Thomas et al. “KPConv: Flexible and Deformable Convolution for Point Clouds” 2019



Kernel Point Convolution (KPConv)

g(z) = > hiz,z)W;

1<k<K -

Filter Values T e & >
. e <
Kernel Points S
A specific choice of kernel function <

Thomas et al. “KPConv: Flexible and Deformable Convolution for Point Clouds” 2019



More Details
Kernel Point Convolution (KPConv)

g(z): Z h(272k>Wk N

< \
1<k<K "
Filter Values e e . S
ES , .‘ Q&%
- ® S
Kernel Points Q@O
! i)
where &S

Hz—zkH) Q

o

h(z, z,) = max (O, 1—

Thomas et al. “KPConv: Flexible and Deformable Convolution for Point Clouds” 2019



KPConv Performance

ModelNet40 ShapeNetPart

Methods OA mcloU  mloU

SPLATNet [34] - 83.7 85.4

SGPN [42] ¥ 82.8 85.8

3DmFV-Net [9] 91.6 81.0 84.3

SynSpecCNN [45] - 82.0 84.7

RSNet [15] = 81.4 84.9 KP-FCNN

SpecGCN [40] 91.5 - 85.4

PointNet++ [27] 90.7 81.9 85.1

SO-Net [19] 90.9 81.0 84.9

PCNN by Ext [2] 92.3 81.8 85.1

SpiderCNN [45] 90.5 824 853

MCConv [13] 90.9 . 85.9

FlexConv [10] 90.2 84.7 85.0

PointCNN [20] 92.2 84.6 86.1

DGCNN [33] 92.2 8.0 847 Convolution-based approaches perform
SubSparseCNN [9] - 833 86.0 _ _

KPCony rigid 52.9 o0 see  Dbetter than PointNet, PointNet++, EdgeConv

KPConv deform 92.7 85.1 86.4

Thomas et al. “KPConv: Flexible and Deformable Convolution for Point Clouds” 2019



KPConv Performance

ModelNet40 ShapeNetPart

Methods OA mcloU  mloU

SPLATNet [34] - 83.7 85.4

SGPN [42] ¥ 82.8 85.8

3DmFV-Net [9] 91.6 81.0 84.3

SynSpecCNN [45] - 82.0 84.7

RSNet [15] - 81.4 84.9 KEEENN

SpecGCN [40] 91.5 - 85.4

PointNet++ [27] 90.7 81.9 85.1

SO-Net [19] 90.9 81.0 84.9

PCNN by Ext [2] 92.3 81.8 85.1

SpiderCNN [45] 90.5 824 853

MCConv [13] 90.9 . 85.9

FlexConv [10] 90.2 84.7 85.0

PointCNN [20] 92.2 84.6 86.1

DGCNN [33] 92.2 8.0 847 Convolution-based approaches perform
SubSparseCNN [] - 833 86.0 _ _

KPCony rigid 52.9 o0 see  Dbetter than PointNet, PointNet++, EdgeConv

KPConv deform 92.7 85.1 86.4 @2019



Point Clouds

PointNet EdgeConv Point Transformer

PointNet++ KPConv

Convolution based architectures for
Point Cloud



Point Transformers

Based on the idea of attention

Attention based architectures
gained popularity in NLP and
Computer Vision

Attention Is All You Need 2017

Ashish Vaswani*
Google Brain
avaswani@google.com

Llion Jones™
Google Research
1lion@google.com

Jakob Uszkoreit*
Google Research
usz@google.com

Noam Shazeer™ Niki Parmar*®
Google Brain Google Research
noam@google.com nikip@google.com

Lukasz Kaiser”
Google Brain
lukaszkaiser@google.com

Aidan N. Gomez*
University of Toronto
aidan@cs.toronto.edu

Image Transformer

2017

Niki Parmar *! Ashish Vaswani *' Jakob Uszkoreit '
Lukasz Kaiser' Noam Shazeer' Alexander Ku >? Dustin Tran*

Abstract

Image generation has been successfully cast as
an autoregressive sequence generation or trans-
formation problem. Recent work has shown that

eelf-attention i< an effective wav of modelino tex-

arrent or
T'he best
ittention
sformer,

B0 ™D




Attention

® Collection of points



Attention

U1

Each point has a value



Attention
Ul ) kl
V2 e ks

U 'kf,;

Up o kn

Each point has a value and a key



Attention
U1 o kl
V2 e ks

Vi ok,

U’n, ® k/n/

Query (

_

In comes a query q



Attention
Ul ) kl
V2 e ks

U 'ki

U'ﬁ; ® k/n/

Query (]

Output — ;=

i* = argmax ¢’ k;
1

Output value, who's key matches
the query



Attention
/Ul ) kl
V2 e ks

U ']CZ'

U'n, ® k‘/n,

Query (]

Output = Z (qT/CZ) *U;

Or more like a weighted average



Attention to Point Cloud

/Ulokl
V2 e ks

U; ']CZ'

U'n, ® k‘/n,

Query (]

Output = Z (qT/CZ) *U;

How to develop this idea for an
architecture over point clouds?



Attention to Point Cloud

//'/1'%1 L1

P2 Je
L2 Output = Z (qT/CZ) *U;
/1/’13 '}(i X; i

% '}{j £ j
We don’t have values and keys.

%l .%2, an We have position, input features.

Query (]



Attention to Point Cloud

Query 4
}/1 '}(1 L1 /Q/ ]
V2 e ki
L2 Output = Z (quz) *U;
/1/’13 '}{z’ X; i
Vi ok X

%7' .%l Ln

Query is a point on the point cloud



Attention to Point Cloud

/Ulokl
V2 e ks

U ']CZ'

U'n; ® k/n/

v = a(x;)

ki

Query (] q — ¢(ij)

Output = Z (qT/Cz) *U;

Y (24)

Use trainable functions (MLP) to
obtain key, value, and query from
features vectors JU;



Attention to Point Cloud
q = ¢(x;)

v kl Query (]
v2 e kz / T
= p(d(a)) p(a;)) - o)
Vi o k; i
Uj ® k; v; = o)

Zhao et al. “Point Transformer” 2020



Point Transformer

Basic version

Zhao et al. “Point Transformer” 2020



Point Transformer

Basic version

= > plolz) P(a)) - alx)

i€N (2 )

Incorporating point feature + location; and using vector for attention

= 37 lB(6(a;), V() + 6(p; — pi)] © ala)
i€N(;)

function other than

dot product position of points

Zhao et al. “Point Transformer” 2020



Point Transformer

|

(N, 32) (N/4, 64) (N/16, 128) (N/64,256)  (N/256,512)  (N/256, 512) (N/64, 256) (N/16, 128) (N/4, 64) N, 32) (N, Do)
’ Point Transformer }
'_§ ~mLp
— o — — — — — — 3 ’ Transition Down ’
§ l Global AvgPooling ‘
‘ Transition Up ’
(N. 32) (N/4. 64) (N/16. 128) (N/64.256)  (N/256.512) (1.512) (1.D..)

Pooing, un-pooling, and residual connections similar to PointNet++

Zhao et al. “Point Transformer” 2020



Point Transformer

Object Classification (ModelNet40)

Object Part Segmentation
(ShapeNetPart Dataset)

Method cat. mloU ins. mloU
PointNet [22] 80.4 83.7
PointNet++ [24] 81.9 85.1
SPLATNet 83.7 85.4
SpiderCNN [44] 81.7 85.3
PCNN [3%] 81.8 891
PointCNN [1¥] 84.6 86.1
DGCNN [40] 82.3 85.1
SGPN [39] 82.8 85.8
PointConv [42] 82.8 85.7
InterpCNN [19] 84.0 86.3
KPConv [33] 85.1 86.4

PointTransformer

83.7

86.6

Method input mAcc OA
3DShapeNets [43] | voxel 773 84.7
VoxNet [20] voxel 83.0 859
Subvolume [23] voxel 86.0 89.2
MVCNN [30] image - 90.1
PointNet [22] point 86.2 89.2
PointNet++ [24 point - 91.9
SpecGCN [36] point - 92.1
PointCNN [ 18] point  88.1  92.2
DGCNN [40] point  90.2 922
PointWeb [50] point 894 923
SpiderCNN [44] point - 924
PointConv [42] point - 92.5
KPConv [33] point - 92.9
InterpCNN [19] point - 93.0
PointTransformer | point  90.6  93.7

State-of-the-art @2020

Zhao et al. “Point Transformer” 2020



Point Transformer

Input Ground Truth Point Transformer Ground Truth Point Transformer

Semantic
Segmentation on
S3DIS Dataset

https://paperswithcode.
com/sota/semantic-segq
mentation-on-s3dis

. ceiling . floor . wall beam . column . window Edmt .table -chair . sofa . bookcase board . clutter State-Of-the-art @2020

Zhao et al. “Point Transformer” 2020


https://paperswithcode.com/sota/semantic-segmentation-on-s3dis
https://paperswithcode.com/sota/semantic-segmentation-on-s3dis
https://paperswithcode.com/sota/semantic-segmentation-on-s3dis

Point Cloud-based Architectures

Efficient than voxel based
architectures

Suitable for point cloud inputs
(LiDAR or RGB-D)



Point Cloud-based Architectures

Efficient than voxel based
architectures

Point clouds may not be the best

Suitable for point cloud inputs way to represent 3D shapes

(LIDAR or RGB-D)

512 points 256 points 128 points




Point Cloud-based Architectures

Efficient than voxel based
architectures

Point clouds may not be the best

Suitable for point cloud inputs way to represent 3D shapes

(LIDAR or RGB-D)

1024 points 512 points 256 points 128 points

Mesh



Mesh



Mesh Representation

Mesh = Vertices, Faces, Edges

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh Representation

Mesh = Vertices, Faces, Edges

/

3d locations
v=(1,y,2)

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh Representation

Mesh = Vertices, Faces, Edges

/

3d locations
v=(1,y,2)

Triplet of vertices
f — (Ula Vg, U3)

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh Representation

Mesh = Vertices, Faces, Edges

/

3d locations
v=(1,y,2)

Triplet of vertices
f — (Ula U2, 'U3)

Pair of vertices

€= (Ul ’ UQ) source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh Representation

Conveys distinctness of local shape Adaptive to non-uniform shape

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Learning on Meshes

Architectures should be able to exploit
this property



Learning on Meshes

Architectures should be able to exploit
this property

Problem: non-uniformity of the mesh

source: Hanocka et al. “MeshCNN: A Network
with an Edge” ACM Trans. Graph. 2019




Learning on Meshes

How do we define convolution, pooling,
and unpooling on this?

Problem: non-uniformity of the mesh

source: Hanocka et al. “MeshCNN: A Network
with an Edge” ACM Trans. Graph. 2019




MeshCNN

Operates over mesh edges



MeshCNN

Operates over mesh edges

Generates and updates representation
vectors over mesh edges




MeshCNN

Operates over mesh edges

Generates and updates representation
vectors over mesh edges

for manifold mesh every edge has
two adjacent faces and four
adjacent edges



Updating Edge Features

v, =0(Kte + Ki(zq + x3) + K_(|za — 7))
+K (e +xq) + K_(|x. — 24|))



Updating Edge Features

v, = 0(Kxe + Ky (24 + 1) + K_(|2, — 7))
+K (e +2q) + K_(|x. — 24|))

T
Invariant to ordering of
Ld

neighboring edges



Pooling and Unpooling

p = avg(a,b,e)

5 unpool

In the figure @ is h, ...

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Pooling and Unpooling

edges with N largest
feature vector are
collapsed at each layer

p = avg(a,b,e)

s unpool

In the figure @ is h, ...

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Pooling and Unpooling

edges with N largest
feature vector are
collapsed at each layer

= avg(a b, e)

pool

S unpool
7

= avg(c d,e)

in L2 norm ||e]]2

In the figure @ is h,

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Pooling and Unpooling

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



MeshCNN: Interesting Results

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019

Classifying fine engraved
cubes

Cube Engraving Classification

method input res  test acc

MeshCNN 750 92.16%

PointNet++ 4096 64.26%




MeshCNN: Interesting Results

preserves important
edges required for
the task

P source: Hanocka et al. “MeshCNN: A Network with
depth an Edge” ACM Trans. Graph. 2019




MeshCNN: Interesting Results

Task 1: Vaze has a handle?

Task 2: Vaze has a neck?

¢ XY
O

YO

P source: Hanocka et al. “MeshCNN: A Network with
depth an Edge” ACM Trans. Graph. 2019



MeshCNN: Human Shape Segmentation

Human Body Segmentation

Method # Features Accuracy
MeshCNN 5 92.30%
SNGC 3 91.02%
Toric Cover 26 88.00%
PointNet++ 3 90.77%
DynGraphCNN 3 89.72%
GCNN 64 86.40%
MDGCNN 64 89.47%

- [2018]

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019




Mesh based Architectures

More structure. Opportunity for the
architecture to be more expressive.

Computationally expensive than Point
Cloud based architectures.

- Pooling, unpooling, manifoldness ( p /

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Thoughts? M e

A

Expressive
Power

Point Cloud .-~

Compute Time



Conclusion

e Need for semantic understanding

e Need for Deep Learning Models on richer domains
o Voxels, Point Clouds, Meshes, Graphs ...

e Deep Learning architectures for 3D

o Voxel
o Point Cloud
o Mesh

e Dataset and Software
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e Need for Deep Learning Models on richer domains
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e Deep Learning architectures for 3D

o Voxel
o Point Cloud
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e Dataset and Software

Next: A unifying view for constructing DL models
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Conclusion: Architectures Discussed

Voxel
VoxNet

Point Cloud

PointNet

Mesh

MeshCNN

OctNet

PointNet++

EdgeConv

KPConv

©
X.

Jis

Point Transformer




Software

Na_ o
”" \Q : https://www.pytorch-geometric.read
‘\"‘;l PyTorch Geometric thedocs.io/

e» Open 3D http://www.open3d.org/

OPEN3D


https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/
http://www.open3d.org/

Datasets

Object Classification and Object Part Segmentation

- ModelNet
- ShapeNet

3D Scene Segmentation
- ScanNet
- Stanford 3D Indoor Scene Dataset (S3DIS)
- Semantic KITTI
- Matterport 3D



Components: Convolution,
Pooling, Un-pooling, and MLP



Convolution Layer

activation map

__— 32x32x3 image

/ 5x5x3 filter /
L

= i
convolve (slide) over all
spatial locations
A 28

u*muraﬂfum&—xMz

w|

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Convolution Layer

__— 32x32x3 image activation maps
/ V 5x5x3 filter %

= 28

convolve (slide) over all

spatial locations

(f % g)(x) = /X F(2)g(z — 2)dz

w|

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Convolution Layer

yar

=l

activation maps

28

Convolution Layer

6 filters of size 5x5x3
A

.

6
New “image” 28x28x6

(f % g)(x) = /X F(2)g(z — 2)dz

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Convolutional Neural Networks

4

.

|

32

CONYV,

RelLU
e.g.6
Ox5x3
filters

A

L

o |

28

Non-linearity

Sigmoid

o(z) =

tanh
tanh(x)

RelLU
max (0, z)

N

Leaky ReLU )
max(0.1z, z)

Maxout N
max(w] z + by, w3 x + by)

ELU '”
T x>0
a(e*—1) =<0 - io

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Convolutional Neural Networks

A A A

CONYV, CONV, CONV,
RelLU RelU RelU

2-95- % e.g. 10
S 5x5x6
32 fiters 28 fltars A

w|
o |
-
o

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Pooling Layer

MAX POOLING MEAN POOLING
2 1 3 9 2 1 3 9
3 4 4 8 4 9 3 4 4 8 25 6
6 3 4 2 6 4 6 3 4 2 25 | 25
1 0 2 2 1 0 4 2

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Fully Connected Layer

y=o(Wx+ c

Sigmold | Laalky Rl 0 )

. max(0.1z, z)

tanh Maxout

tanh max(wi x + by, wd x + by)

ReLU / =L J
O T x>0

max £C {a(e" -1) <0 ) »

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Multi-Layer Perceptron (MLP)

y=ocWioW,_1o0(---cWiz+c1) )+ 1)+ )

Sigmold | Laalky Rl 0 )

. max(0.1z, x)

tanh Maxout

tanh(x) i ¥ max(wlpx + b, wga: + bs)

ReLU / =L _/
O, x x>0

max( :IZ) . {a(e" -1) <0 ; to

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Un-Pooling Layer

Nearest Neighbor

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



Un-Pooling Layer

Max Pooling using Pooling Layer Positions

MAX POOLING
2 | 1|3 [tg) ol ol oli2
N7 \N_7
7N other =
E {\f/' 4 8 4 9 layers 1 2 0 l\ 1/: 0 0
7N 7= — - 0 > — -~ =3
{\9 /, 3 l\ f /, 2 6 4 3 4 {\ g’ /' O l\ﬁ /' O
1 0 2 2 0 0 0 0

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu “Stanford CS231n: Convolutional Neural Networks for Visual Recognition” Spring 2021



