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Semantic Understanding

Need for Deep Learning Architectures on Point
Clouds, Voxels, Meshes, Graphs

Mesh

chair
(GT: chair)

floor
(GT: floor)}

Point Cloud

. ) Wald et al. “Learning 3D Semantic Scene Graphs
Voxel Vespa et al. “Efficient Octree-based Volumetric Graph from 3D Indoor Reconstruction” 2020
SLAM Supporting Signed-Distance and

Occupancy Mapping” RAL 2017



Recap: Architectures Discussed

Voxel
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Point Cloud
PointNet
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Point Transformer



Today! For the first part ...

Voxel
x @ .Xm B x @ ¢ €j .X
VoxNet OctNet ~_ Bapcoy NS ,
Point Cloud e e
PointNet EdgeConv Point Transformer
PointNet++ KPConv
Mesh

MeshCNN




Point Cloud-based Architectures

Efficient than voxel based
architectures

Suitable for point cloud inputs
(LiDAR or RGB-D)



Point Cloud-based Architectures

Efficient than voxel based
architectures

Point clouds may not be the best

Suitable for point cloud inputs way to represent 3D shapes

(LIDAR or RGB-D)

512 points 256 points 128 points




Point Cloud-based Architectures

Efficient than voxel based
architectures

Point clouds may not be the best

Suitable for point cloud inputs way to represent 3D shapes

(LIDAR or RGB-D)

1024 points 512 points 256 points 128 points

Mesh



Mesh



Mesh Representation

Mesh = Vertices, Faces, Edges

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh Representation

Mesh = Vertices, Faces, Edges
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3d locations
v=(1,y,2)

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh Representation

Mesh = Vertices, Faces, Edges

/

3d locations
v=(1,y,2)

Triplet of vertices
f — (Ula Vg, U3)

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh Representation

Mesh = Vertices, Faces, Edges

/

3d locations
v=(1,y,2)

Triplet of vertices
f — (Ula U2, 'U3)

Pair of vertices

€= (Ul ’ UQ) source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh Connectivity and Local Shape

Conveys distinctness of local shape Adaptive to non-uniform shape

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Learning on Meshes

Architectures should be able to exploit
this property



Learning on Meshes

Architectures should be able to exploit
this property

Problem: non-uniformity of the mesh

source: Hanocka et al. “MeshCNN: A Network
with an Edge” ACM Trans. Graph. 2019




Learning on Meshes

Each vertex has varying number of

Architectures should be able to exploit
neighbors

this property

Problem: non-uniformity of the mesh

source: Hanocka et al. “MeshCNN: A Network
with an Edge” ACM Trans. Graph. 2019




Learning on Meshes

Each vertex has varying number of
neighbors

How do we define convolution, pooling,
and unpooling on this?

Problem: non-uniformity of the mesh

source: Hanocka et al. “MeshCNN: A Network
with an Edge” ACM Trans. Graph. 2019




MeshCNN

Every edge has two adjacent faces
and four adjacent edges




MeshCNN

Every edge has two adjacent faces
and four adjacent edges

Operates over mesh edges

Generates and updates
representation vectors over mesh
edges




Ordering Neighboring Edges

Always order counter-clockwise

Two possibilities
(waa Lpy Lc, wd)

(wca LdyLq, ZE‘b)

Aggregation should be invariant to these two possibilities



Updating Edge Features

z, =0 (Kzxe + Ky (x, + ) + Koy (|zg — z|)
+ K3 (CBb + CBd) + K4(|azb — :Bd|))



Initial features
Vector of length 5

Invariant to translation, rotation,
and uniform scale




Pooling and Unpooling

p = avg(a,b,e)

5 unpool

In the figure g is T ...

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Pooling and Unpooling

edges with N smallest
feature vector are
collapsed at each layer

p = avg(a,b,e)

s unpool

In the figure g is T ...

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Pooling and Unpooling

edges with N smallest
feature vector are
collapsed at each layer

p = avg(a,b,e)

S unpool
7

in L2 norm ||e]]2

In the figure g is T ...

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Pooling and Unpooling

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



MeshCNN: Interesting Results

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019

Classifying fine engraved
cubes

Cube Engraving Classification

method input res  test acc

MeshCNN 750 92.16%

PointNet++ 4096 64.26%




MeshCNN: Interesting Results

preserves important
edges required for
the task

P source: Hanocka et al. “MeshCNN: A Network with
depth an Edge” ACM Trans. Graph. 2019




MeshCNN: Interesting Results

Task 1: Vaze has a handle?

Task 2: Vaze has a neck?

¢ XY
O

YO

P source: Hanocka et al. “MeshCNN: A Network with
depth an Edge” ACM Trans. Graph. 2019



MeshCNN: Human Shape Segmentation

Human Body Segmentation

Method # Features Accuracy
MeshCNN 5 92.30%
SNGC 3 91.02%
Toric Cover 26 88.00%
PointNet++ 3 90.77%
DynGraphCNN 3 89.72%
GCNN 64 86.40%
MDGCNN 64 89.47%

- [2018]

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019




Mesh based Architectures

More structure. Opportunity for the
architecture to be more expressive.

Computationally expensive than Point
Cloud based architectures.

- Pooling, unpooling, manifoldness ( p /

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019



Mesh based Architectures

Different meshes can represent the
same thing

Data Augmentation

source: Hanocka et al. “MeshCNN: A Network with an Edge” ACM Trans. Graph. 2019
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Second Part

2
<—_-\éeometric Deep Learning

Unifying view of developing architectures on all data
Symmetry
Equivariance, Invariance, Convolutions

Unified Blueprint

References:

Provide a unifying framework for
developing deep learning
architectures

Bronstein et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges” 2021.
Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Domains and Architectures

Image 2D Grid CNN Voxel 3D Grid VoxNet, OctNet
Point Cloud Sets PointNet . Time 1D Grid RNN, LSTM
Mesh, Graph MeshCNN Graph Graph EdgeConv,

Manifold MeshCNN, GNN ...



Domains and Architectures

Image 2D Grid CNN Voxel
Point Cloud Sets PointNet ... Time
Mesh, Graph MeshCNN Graph
Manifold

Need an abstraction

3D Grid

1D Grid

Graph

VoxNet, OctNet

RNN, LSTM

EdgeCony,

MeshCNN, GNN ...



Domain



Signals on the Domain
Q @
O0—0—0—0—0—0—0—-00

X(Q) = {z:0 >R}



Functions

()
Fc :{f.)((ﬂ) %R}

Fs =1f: &(Q) = X(Q)}



Functions

Y/

g .
. A i
-
e - P
LY S
¥ 4 { 5 b,
e 4 vy
I \\

'FC — {f . X (Q) — R} Classification

Fs = {f: X(Q) + X(Q)} s



Symmetries

Y/

—> f —> cat

A 4
v

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Symmetries

Y/

—> f —> cat

Sa b = shift or translation operator
Y

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Symmetries

Y/

& 7}

f(@) = f(Sap - @)
_—-& d f =‘A f(x) _ Sa,b . f(:l:)

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Symmetries

()
P = permutation of the domain
O O O
o O O
© 0



Symmetries

Y/
P

= permutation of the domain

O O
O O
O 0



Space of Symmetries S

What structure does the set of all symmetries possess?



Space of Symmetries S

What structure does the set of all symmetries possess?

1. ldentity:
f(z) = f(i- =) LT =
2. Inverse:

If f(x) = f(g- =) and g - & = y then there should exist g™! -y = x

3. Composition

If f(z) = f(g-=)and f(y) = f(h-y) then f(z) = f((g- h) - z)



Space of Symmetries S

What structure does the set of all symmetries possess?

1. Identity: 1 €S
f(z) = f(i-z) 1T =2
2. Inverse: g€ S — g— c S‘

If f(x) = f(g- =) and g - & = y then there should exist g~! -y = z
3. Composition

It f(z) = f(g- ) and f(y) = f(h ) then f(z) = f((g-}) - )
g heES=g-hes§




Space of Symmetries S

What is this structure?

What structure does the set of all symmetries possess?

1. Identity: 1EDS
f(x) = f(i-x) 1T =2
2. Inverse: g € S — g—l c S‘

If f(x) = f(g- =) and g - & = y then there should exist g~! -y = z
3. Composition

It f(z) = f(g- ) and f(y) = f(h ) then f(z) = f((g-}) - )
g heES=g-hes§




Space of Symmetries S

What structure does the set of all symmetries over a domain possess?

Space of Symmetries = Group

S =G



Space of Symmetries

Notation

What structure does the set of all symmetries possess?

Space of Symmetries = Group

S=G

Notation



Equivalence Relation on X(Q)

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Equivalence Relation on X(Q)
G-Equivalence
r~oy<SdgeG:gr=y

Satisfies the axioms of an equivalence relation:

I. Reflexivity: XU ~@G L

* (Because G contains the identity)

2. Transitivity:
T~ YNY MG 22X ~g 2
* (Because G is closed under composition)
3. Symmewry: T ~q Y < Yyr~aGg T

* (Because G is closed under inverses)

source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Equivalence Relation on X(Q)

If we knew all the symmetries
in the input signal space, we
wouldn’t need any data

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Equivalence Relation on X(Q)

More symmetries we exploit,
the less data and parameters
we will need

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Adding Structure using Symmetry G

Classification

Fo={f:X(2) — R}

Segmentation

Fs =1f: (@) = X(Q)}



Adding Structure using Symmetry G

Classification

fC — {f : X(Q) —> R} + invariance to group action

Segmentation

‘FS — {f . X(Q) —> X(Q)} + equivariance to group action



Adding Structure using Symmetry G

Classification

Fo={f:XQ) —=R|flg-z) = f(z)Vgec G}

Segmentation

Fs={f: X(Q) - X(Q)| flg-z) =g- f(x) Vg € G}



A Simple Example

Permutation invariant single layer perceptron



Translation Equivariance and Convolution
1= [d] x |d]

X(Q) _ Rdxd



Translation Equivariance and Convolution
Q = [d] x [d] G = {Sk; | Sy = shiftby (k,1)}

X(Q) _ Rdxd



Translation Equivariance and Convolution

1= d] x |d G = {Sk, | Sky = shiftby (k,1)}
X(Q) = R™ (Sks - z) (i,)) =z(i @k, j® )



Translation Equivariance and Convolution

1= d] x |d G = {Sk, | Sky = shiftby (k,1)}
X(Q) = R™ (Sks - z) (i,)) =z(i @k, j® )

L:X(Q) — X(Q) is alinear map



Translation Equivariance and Convolution

Q= [d] x [d

X(Q) = R

G = {Sk,l | Sk,l = shift by (k, l)}

(Ski-z)(4,5) =z(i @k, j® )

L:X(Q) — X(Q) is alinear map

Theorem

f(z) = o(L(z)) is

GG-equivariant

=

L(z) is a convolution




What does this mean?

Image Maps
Input

Ko e\

Convolutions FuIIy Connected

Subsampllng
Theorem
finV:X%R finv-fzq- 2(1_1"' ;q:X%R
eq peq eq - is G-invariant
1 , 2 ’ e o o L L[] X % X




What does this mean?

CNNs are not strictly translation invariant!

Image Maps Biscione & Bowers “Learning Translation
Input Invariance in CNNs” NeurlPS 2020

=N\

FuIIy Connected

Convolutions
Subsampllng

Theorem

X SR Fo A f X R

eq peq eq - is G-invariant
P X — X

1’ 2’...




Geometric Deep Learning Blueprint
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source: Bronstein et al. “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint
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Classification

source: Bronstein et al. “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint

Q Q”

/

A

1

Ve
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4

V4

WV
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A

L
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/

4

f

Classification

source: Bronstein et al. “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint Segmentation
Q 9 o Q" j
W WV j/

1 L

Un-pooling Layers <



Geometric Deep Learning Blueprint Segmentation

Q Qo g Q" 0

A4 A4 &

144384

residual connections




Using the Blueprint

Suffices to find invariant and equivariant
functions on different domains

o O O
O



Sets



Equivariance over Sets

Q= [d] X(Q) =R¢ G = {P | P = d x d permutation matrix }

f(P-2) = P- f(a)



Equivariance over Sets

Q= [d] X(Q) =R¢ G = {P | P = d x d permutation matrix }

T1 ¢(z1)




Equivariance over Sets

Q= [d] X(Q) =R¢ G = {P | P = d x d permutation matrix }

L1 ¢(z1)
Can be a permutation
) ¢(z2) invariant function of all
o(-) the inputs




Recall; Point Transformer

Basic version

= > plolz) P(a)) - alx)

i€N (2 )

Incorporating point feature + location; and using vector for attention

= 37 lB(6(a;), V() + 6(p; — pi)] © ala)
i€N(;)

function other than

dot product position of points

Zhao et al. “Point Transformer” 2020



Invariance over Sets

Q= [d] X(Q) =R¢ G = {P | P = d x d permutation matrix }

F(P-z) = f(=)



Invariance over Sets

Q= [d] xX(Q) = x4 G = {P | P = d x d permutation matrix }

L-—» countable set

Theorem:

f:X(Q) =R l l flz) =19 (Zle ¢(«”L’z'))

is G-invariant 3 6,1
Y]

Zaheer et al. “Deep Sets” NeurlPS 2017



Recall: PointNet Architecture

input mlp (64,64) feature mlp (64,128,1024) max
transform > > transform = > pool

> > > <

1024
share d nxl1 024 [ |

| | global feature

nx64
y
nx64

" input points -
nx3
A /
nx3

matrix :
multiply | :

multiply

f({x1, zo, ... 2, }) = max{h(x;), h(xs),... h(z,)}

.....................................................................................................................................................................

mlp
(512,256,k)

v k

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



Simple Example

Permutation equivariant single layer perceptron



Question

Why not use the blueprint with permutation invariant and equivariant single layer
perceptron?



Backup



Error Decomposition



