
LDSO: Direct Sparse Odometry with Loop Closure

Xiang Gao, Rui Wang, Nikolaus Demmel and Daniel Cremers

Abstract— In this paper we present an extension of Direct
Sparse Odometry (DSO) [1] to a monocular visual SLAM
system with loop closure detection and pose-graph optimization
(LDSO). As a direct technique, DSO can utilize any image pixel
with sufficient intensity gradient, which makes it robust even
in featureless areas. LDSO retains this robustness, while at
the same time ensuring repeatability of some of these points
by favoring corner features in the tracking frontend. This re-
peatability allows to reliably detect loop closure candidates with
a conventional feature-based bag-of-words (BoW) approach.
Loop closure candidates are verified geometrically and Sim(3)
relative pose constraints are estimated by jointly minimizing
2D and 3D geometric error terms. These constraints are fused
with a co-visibility graph of relative poses extracted from
DSO’s sliding window optimization. Our evaluation on publicly
available datasets demonstrates that the modified point selection
strategy retains the tracking accuracy and robustness, and
the integrated pose-graph optimization significantly reduces the
accumulated rotation-, translation- and scale-drift, resulting in
an overall performance comparable to state-of-the-art feature-
based systems, even without global bundle adjustment.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been
an active research area in computer vision and robotics for
several decades since the 1980s [2], [3]. It is a fundamental
module of many applications that need real-time localization
like mobile robotics, autonomous MAVs, autonomous driv-
ing, as well as virtual and augmented reality [4]. While other
sensor modalities such as laser scanners, GPS, or inertial
sensors are also commonly used, visual SLAM has been
very popular, in part because cameras are readily available
in consumer products and passively acquire rich information
about the environment. In particular, in this work we focus
on the monocular case of tracking a single gray-scale camera.

Typically, a visual SLAM system consists of a camera
tracking frontend, and a backend that creates and maintains
a map of keyframes, and reduces global drift by loop closure
detection and map optimization. The frontend may localize
the camera globally against the current map [4], [5], track
the camera locally with visual (keyframe) odometry (VO)
[6], [7], or use a combination of both [8], [9], [10].

There are several open challenges in adapting a direct,
sliding-window, marginalizing odometry system like DSO to
reuse existing information from a map. For example, in order

Xiang Gao, Rui Wang, Nikolaus Demmel and Daniel
Cremers are with the Computer Vision Group, Department
of Informatics, Technical University of Munich, Germany
{gaoxi,wangr,demmeln,cremers}@in.tum.de

This work was partially supported by the grant “For3D” by the Bavarian
Research Foundation, the grant CR 250/9-2 “Mapping on Demand” by the
German Research Foundation and the ERC Consolidator Grant 649 323 “3D
Reloaded”.

Fig. 1. Estimated trajectories with and without loop closing in the TUM-
Mono dataset. The left part are sample images from sequence 31, whose end
point should be at the same place as the start point. The right part shows the
estimated trajectory by LDSO before (red) and after (yellow) loop closure.
The zoom-in highlights how trajectories and point-clouds align much better
after.

to evaluate the photometric error, images of past keyframes
would have to be kept in memory, and when incorporating
measurements from previous keyframes, it is challenging to
ensure estimator consistency, since information from these
keyframes that is already contained in the marginalization
prior should not be reused. We therefore propose to adapt
DSO as our SLAM frontend to estimate visual odometry
with local consistency and correct its drift with loop closure
detection and pose graph optimization in the backend. Note
that DSO itself consists also of a camera-tracking frontend
and a backend that optimizes keyframes and point depths.
However, in this work we refer to the whole of DSO as our
odometry frontend.

VO approaches can be divided into two categories: indirect
(feature-based) methods that minimize the reprojection error
with fixed, previously estimated correspondences between
repeatable discrete feature points, and direct methods that
jointly estimate motion and correspondences by minimizing
the photometric error in direct image alignment. While
feature-based methods have been the mainstream for a long
time, recent advances in direct VO have shown better accu-
racy and robustness, especially when the images do not con-
tain enough explicit corner features [1], [11]. The robustness
in the direct approach comes from the joint estimation of
motion and correspondences as well as the ability to also use
non-corner pixels, corresponding to edges, or even smooth
image regions (as long as there is sufficient image gradient).
However, without loop closing, both indirect and direct
VO suffers from the accumulated drift in the unobservable

ar
X

iv
:1

80
8.

01
11

1v
1

 [
cs

.C
V

]
 3

 A
ug

 2
01

8

degrees-of-freedom, which are global translation, rotation
and scale in the monocular case. This makes the long-term
camera trajectory and map inaccurate and thus limits the
application to only short-term motion estimation.

In order to close loops, they need to be detected first.
The state-of-the-art loop detection methods — sometimes
referred to as appearance-only SLAM — are usually based
on indexed image features (e.g. BoW [12], [13], [14], [15])
and thus can be directly applied in feature-based VO by
reusing the features from the frontend. This, however, is not
as straightforward in the direct case: If we detect and match
features independently from the frontend, we might not have
depth estimates for those points, which we need to efficiently
estimate Sim(3) pose-constraints, and if instead we attempt
to reuse the points from the frontend and compute descriptors
for those, they likely do not correspond to repeatable features
and lead to poor loop closure detection. The key insight here
is that direct VO does not care about the repeatability of
the selected (or tracked) pixels. Thus, direct VO systems
have in the past been extended to SLAM either by using
only keyframe proximity for loop closure detection [6] or by
computing features for loop closure detection independently
from frontend tracking and constraint computation [7]. Direct
image alignment is then used to estimate relative pose
constraints [6], [7], which requires images of keyframes to
be kept available. We propose instead to gear point selection
towards repeatable features and use geometric techniques to
estimate constraints. In summary, our contributions are:

• We adapt DSO’s point selection strategy to favor re-
peatable corner features, while retaining its robustness
against feature-poor environments. The selected corner
features are then used for loop closure detection with
conventional BoW.

• We utilize the depth estimates of matched feature points
to compute Sim(3) pose constraints with a combination
of pose-only bundle adjustment and point cloud align-
ment, and — in parallel to the odometry frontend —
fuse them with a co-visibility graph of relative poses
extracted from DSO’s sliding window optimization.

• We demonstrate on publicly available real-world
datasets that the point selection retains the tracking
frontend’s accuracy and robustness, and the pose graph
optimization significantly reduces the odometry’s drift
and results in overall performance comparable state-
of-the-art feature-based methods, even without global
bundle adjustment.

• We make our implementation publicly available1.

Fig. 1 illustrates how LDSO corrects accumulated drift after
closing a loop in the TUM-Mono dataset.

II. RELATED WORK

Many mature feature-based monocular SLAM systems
have been presented in recent years, often inspired by the
seminal PTAM [4], where splitting the system into a camera

1https://vision.in.tum.de/research/vslam/ldso

tracking frontend and an optimization-based mapping back-
end was originally proposed, and later ScaViSLAM [16],
which suggested to mix local bundle adjustment with Sim(3)
pose-graph optimization. One of the more influential such
systems has been ORB-SLAM [5]. It features multiple levels
of map-optimization, starting from local bundle-adjustment
after keyframe insertion, global pose-graph optimization after
loop closures detected with BoW, and finally (expensive)
global bundle adjustment. Since unlike LDSO it uses tra-
ditional feature matching to localize images against the
current map, much emphasis is on map-maintenance by
removing unneeded keyframes and unused features. Note that
while loop-closure detection and pose graph optimization
are similar in LDSO, we only need to compute feature
descriptors for keyframes.

Visual odometry systems have been extended to SLAM
systems in different ways. It is interesting to note that many
systems propose to integrate inertial sensors [17], [9], [8],
[10] and/or use a stereo setup [17], [10], [18], [19], since
this can increase robustness in challenging environments and
make additional degrees of freedom observable (global scale,
roll and pitch). Lynen et al. [8] proposes to directly include
2D-3D matches from an existing map as Kalman Filter
updates in a local MSCKF-style odometry estimator. Okvis
[17] is a feature-based visual-inertial keyframe odometry that
maintains a local map of feature points in a constant-size
marginalization window (similar to DSO) that does not reuse
points once it is out of the local window. Later, a similar
visual-inertial weighted least-squares optimization strategy
was adapted in maplab [10] for batch map optimization
without marginalization, but as a camera tracking frontend,
a Kalman Filter based estimator minimizing the photometric
error between tracked image patches is used. Feature-based
localization against an existing map is incorporated in the
frontend as pose updates. VINS-Mono [9] in turn is a feature-
based monocular visual-inertial SLAM system that employs
a marginalizing odometry front-end very similar to okvis.
It includes feature observations from an existing map in this
sliding window optimization. Similar to ORB-SLAM and our
work, loop closure and global map refinement are based on
BoW and pose graph optimization, but with help of the iner-
tial sensors, it suffices to use non-rotation-invariant BRIEF
descriptors and do pose graph optimization in 4 degrees-
of-freedom. While in ORB-SLAM the feature extraction
step costs almost half of the running time, the frontend
tracking in VINS-Mono is based on KLT features and thus
is capable of running in real-time on low-cost embedded
systems. This however means, that for loop closure detection
additional feature points and descriptors have to be computed
for keyframes.

As a direct monocular SLAM system and predecessor
of DSO, LSD-SLAM [7] employs FAB-MAP [15] — an
appearance-only loop detection algorithm — to propose can-
didates for large loop closures. However, FAB-MAP needs
to extract its own features and cannot re-use any information
from the VO frontend, and the constraint computation in turn
does not re-use the feature matches, but relies on direct image

https://vision.in.tum.de/research/vslam/ldso

alignment using the semi-dense depth maps of candidate
frames in both directions and a statistical test to verify the
validity of the loop closure, which also means that images
of all previous keyframes need to be kept available.

III. LOOP CLOSING IN DSO

A. Framework

Before delving into the details of how our loop clos-
ing thread works, we first briefly introduce the general
framework and formulation of DSO. DSO is a keyframe-
based sliding window approach, where 5-7 keyframes are
maintained and their parameters are jointly optimized in the
current window. Let W = {T1, . . . ,Tm,p1, . . . ,pn} be
the m SE(3) keyframe poses and n points (inverse depth
parameterization) in the sliding window, the photometric
error to be minimized is defined as [1]:

min
∑

Ti,Tj ,pk∈W

Ei,j,k, where

Ei,j,k =
∑

p∈Npk

wp

∥∥∥∥(Ij [p
′]− bj)−

tje
aj

tieai
(Ii[p]− bi)

∥∥∥∥
γ

,

(1)
where Npk

is the neighborhood pattern of pk, a, b are the
affine light transform parameters, t is the exposure time, I
denotes an image and wp is a heuristic weighting factor. p′

is the reprojected pixel of p on Ij calculated by

p′ = Π(RΠ−1(p, dpk
) + t), (2)

with Π : R3 → Ω the projection and Π−1 : Ω × R → R3

the back-projection function, R and t the relative rigid body
motion between the two frames calculated from Ti and Tj ,
d the inverse depth of the point.

As a new frame arrives, DSO estimates its initial pose
using direct image alignment by projecting all the active 3D
points in the current window into this frame. If required,
this frame thereafter will be added into the local windowed
bundle adjustment. The sliding window naturally forms a
co-visibility graph like in ORB-SLAM, but the co-visible
information is never used outside the local window, as old
or redundant keyframes and points are marginalized out. Al-
though the windowed optimization becomes computationally
light-weight and more accurate using the marginalization
prior, the estimation will inevitably drift.

A global optimization pipeline is needed in order to close
long-term loops for DSO. Ideally global bundle adjustment
using photometric error should be used, which nicely would
match the original formulation of DSO. However, in that case
all the images would need to be saved, since the photometric
error is computed on images. Moreover, nowadays it is still
impractical to perform global photometric bundle adjustment
for the amount of points selected by DSO. To avoid these
problems we turn to the idea of using pose graph optimiza-
tion, which leaves us several other challenges: (i) How to
combine the result of global pose graph optimization with
that of the windowed optimization? One step further, how
to set up the pose graph constraints using the information in

3D Points

......

5~7 Active KeyframesMarginalized
 Keyframes

Sliding Window

Pose Graph

Time

DSO Windowed Optimization
Global Pose Graph Optimization

Keyframe Database

Candidate

Sim(3) Constraint Scr

Fig. 2. Framework of the proposed system.

the sliding window, considering that pose graph optimization
minimize Sim(3) geometry error between keyframes while
in the sliding window we minimize the photometric error?
(ii) How to propose loop candidates? While the mainstream
of loop detection is based on image descriptors, shall we
simply add another thread to perform those feature related
computations? (iii) Once loop candidates are proposed we
need to compute their relative Sim(3) transformation. In a
direct image alignment approach, we need to set an initial
guess on the relative pose to start the Gauss-Newton or the
Levenberg-Marquardt iterations, which is challenging in this
case as the relative motion may be far away from identity.

Taking these challenges into account, we design our loop
closing module as depicted in Fig. 2. Alongside the DSO
window, we add a global pose graph to maintain the connec-
tivity between keyframes. DSO’s sliding window naturally
forms a co-visibility graph where we can take the relative 3D
pose transformations between the keyframes as the pairwise
pose measurements. For loop detection and validation, we
rely on BoW and propose a novel way to combine ORB
features with the original sampled points of DSO. In this
way, if a loop candidate is proposed and validated, its Sim(3)
constraint with respect to the current keyframe is calculated
and added to the global pose graph, which is thereafter
optimized to obtain a more accurate long-term camera pose
estimation.

B. Point Selection with Repeatable Features

It is worth noting that even in direct methods like LSD-
SLAM or DSO, point selection is still needed; One difference
from indirect methods is that the repeatability of those points
is not required by direct methods. DSO uses a dynamic
grid search to pick enough pixels even in weakly textured
environments. We modify this strategy to make it more
sensitive to corners. More specifically, we still pick a given
number of pixels (by default 2000 in DSO), in which part

Fig. 3. Pixel selection in DSO and LDSO. The left part is pixels picked by DSO and the right part shows the corners of LDSO (we don’t show the
non-corners to make the image look clear). And the top part is a well textured environment and the bottom part is a weak textured one. Note that if the
number of corners is less than the threshold, we will also pick extra pixels just like DSO to make the system robust against feature-less situations. The
points in the blue box shows the difference of point repeatability.

of them are corners (detected by using the easy-to-compute
Shi-Tomasi score [20]), while the others are still selected
using the method proposed for DSO. Keeping the number of
corners small, we compute their ORB descriptors [21] and
pack them into BoW. The VO frontend uses both the corners
and the non-corners for camera tracking, keeping therefore
the extra overhead for feature extraction of the loop closing
thread to a minimum.

Fig. 3 shows the pixel selection in the original DSO and
the LDSO. It can be seen that the pixels picked by DSO
have little repeatability and therefore it is hard to seek image
matchings using those points for loop closure. In LDSO we
use both corners and other pixels with high gradients, where
the corners are used both for building BoW models and for
tracking, while the non-corners are only used for tracking.
In this way we can on one hand track the weak texture area,
on the other hand also match features between keyframes if
needed.

C. Loop Candidates Proposal and Checking

As we compute ORB descriptors for each keyframe, a
BoW database is built using DBoW3 [14]. Loop candidates
are proposed for the current keyframe by querying the
database and we only pick those that are outside the current
window (i.e., marginalized keyframes). For each candidate
we try to match its ORB features to those of the current
keyframe, and then perform RANSAC PnP to compute
an initial guess of the SE(3) transformation. Afterwards
we optimize a Sim(3) transformation using Gauss-Newton
method by minimizing the 3D and 2D geometric constraints.
Let P = {pi} be the reconstructed features in the loop
candidate and dpi

their inverse depth, Q = {qi} be the
matched features in the current keyframe, D be the sparse
inverse depth map of the current keyframe which is computed
by projecting the active map points in the current window
into the current keyframe. For some features in Q we can

find their depth in D, for the others we only have their
2D pixel positions. Let Q1 ⊆ Q be those without depth
and Q2 = Q\Q1 be those with depth, then the Sim(3)
transformation from the loop candidate (reference) to the
current keyframe Scr can be estimated by minimizing the
following cost function:

Eloop =
∑

qi∈Q1

w1

∥∥ScrΠ−1(pi, dpi
)−Π−1(qi, dqi

)
∥∥
2
+∑

qj∈Q2

w2

∥∥Π(ScrΠ
−1(pj , dpj))− qj

∥∥
2
,

(3)

where Π(·) and Π−1(·) are the projection and back-
projection functions as defined before, w1 and w2 are weights
to balance the different measurement units. In practice the
scale can only be estimated by the 3D part, but without the
2D reprojection error, the rotation and translation estimate
will be inaccurate if the estimated depth values are noisy.

D. Sliding Window and Sim(3) Pose Graph

In this section we explain how to fuse the estimations
of the sliding window and the global pose graph. Let
x = [x>p ,x

>
d]> with xp the poses of the keyframes in the

current window parameterized using twist coordinates, xd
the points parameterized by their inverse depth d, then the
windowed optimization problem using Levenburg-Marquardt
(L-M) iterations is:

Hδx = −b, (4)

where H is the Hessian matrix approximated as J>WJ+λI
in L-M iterations, δx is the optimal increment, W is a weight
matrix, b = J>Wr with Jacobian J and residual r. It can
also be written in a block-matrix way[

Hpp Hpd

Hdp Hdd

][
δxp
δxd

]
= −

[
bp
bd

]
. (5)

It is well known that H has an arrow-like sparse pattern (in
DSO’s formulation Hdd being a diagonal matrix) where we
can exploit the sparsity in the bottom right part to perform
sparse bundle adjustment [22], [23].

The marginalization strategy in DSO keeps the sparsity
pattern in Hdd and also keeps a motion prior expressed as
a quadratic function on x (for details please refer to Eq.
(19) in [1]). This prior can be also regarded as a hyper
edge in the pose graph which constraints all the keyframes
inside. However, traditional pose graph optimization takes
only pair-wise observations between two keyframes like Tij

and compute the measurement error:

eij = TijT̂
−1
j T̂i, (6)

where (̂·) is the estimated value of a variable.
Since our loop closing approach computes relative pose

constraints between the loop candidate and the current frame,
we also approximate the constraints inside the marginaliza-
tion window with pairwise relative pose observations. Specif-
ically, we compute those observations from the frontend’s
current global pose estimates.

It is also important to note that, since we do not want to
disturb the local windowed optimization (it contains absolute
pose information), in pose graph optimization we will fix the
current frame’s pose estimation. Therefore, the pose graph
optimization will tend to modify the global poses of the
old part of the trajectory. Besides, the global poses of the
keyframes in the current window are not updated after the
pose graph optimization, to further make sure that the local
windowed bundle adjustment is not influenced by the global
optimization. Our implementation is based on g2o, a graph
optimization library proposed in [25].

IV. EVALUATION

We evaluate our method on three popular public datasets:
TUM-Mono [24], EuRoC MAV [26] and KITTI Odome-
try [27], all in a monocular setting.

A. The TUM-Mono Dataset

The TUM-Mono Dataset is a monocular dataset that
consists of 50 indoor and outdoor sequences. It provides
photometric camera calibration, but no full ground-truth
camera trajectories. The camera always returns to the starting
point in all sequences, making this dataset very suitable for
evaluating accumulated drifts of VO systems. For this reason
we disable the loop closure functionality of our method on
this dataset, to first evaluate the VO accuracy of our method
with the modified point selection strategy.

We evaluate three different point selection strategies: (1)
random point selection; (2) the original method of DSO and
(3) our method. For each strategy we run 10 times forward
and 10 times backward on each sequence to account for
the nondeterministic behavior. We compute the accumulated
translational, rotational and scale drifts et, er, es in the
keyframe trajectories using method described in [24].

Fig. 4 shows the color-coded alignment error in all the
sequences. Fig.5 shows the cumulative error plot, which

depicts the number of runs whose errors are below the
corresponding x-values (thus closer to left-top is better). In
both figures we see that our integration of corner features into
DSO does not reduce the VO accuracy of the original system.
Another interesting point is, although random picking makes
the tracking fail more frequently, it seems it does not increase
the errors on those successfully tracked sequences like s01
to s10.

To show some qualitative results we also run LDSO with
loop closing on TUM-Mono and get some Sim(3) closed
trajectories shown in Fig. 6. An example of the reconstructed
map is shown in Fig. 7.

B. The EuRoC MAV Dataset

The EuRoC MAV Dataset provides 11 sequences with
stereo images, synchronized IMU readings and ground-truth
camera trajectories. We compare LDSO with DSO and ORB
on this dataset by evaluating their root-mean-square error
(RMSE) using their monocular settings. Same as before
on each sequence we run 10 times forward and 10 times
backward for each method and the results are shown in Fig. 8
and Fig. 9. Generally speaking, ORB-SLAM2 performs quite
well on this dataset and it only fails consistently on sequence
V2-03 when running forward. DSO and LDSO both fail
on sequence V2-03, but on most of the others sequences
LDSO significantly improves the camera tracking accuracy.
The overall improvement after having loop closure can also
be found in Fig. 9. From the plot we can see that ORB-
SLAM2 is more accurate, whereas LDSO is more robust on
this dataset.

C. The KITTI Odometry Dataset

On the KITTI Odometry Dataset, as shown previously
in the thorough evaluation in [19], monocular VO systems
like DSO and ORB-SLAM (the VO component only) suffer
severe accumulated drift which makes them not usable for
such large-scale scenarios. While the natural way to resolve
this problem is to integrate other sensors like IMU or to use
stereo cameras which has been proved quite successful [19],
[18], here we want to see the potential of our monocular
method after the integration of the loop closure functionality.

We compare LDSO with DSO and ORB-SLAM2 and
show the Absolute Trajectory Errors (ATEs) on all the
sequences of the training set in Table I. The ATEs are
computed by performing Sim(3) alignment to the ground-
truth. Not surprisingly on sequences with loops (seq. 00,
05, 07), LDSO improves the performance of DSO a lot.
Besides, our method achieves comparable accuracy to ORB-
SLAM2, which has a global bundle adjustment in the loop
closing thread and we only use pose graph optimization.
Some qualitative results on the estimated camera trajectories
can be found in Fig. 10.

D. Runtime Evaluation

Finally we present a short runtime analysis about the
point selection step. Note that loop closure only occurs very
occasionally and the pose graph is running in a single thread,

0

2

4

6

8

10
ORIG DSO PICK

s01 s10 s20 s30 s40 s50

Fwd

Bwd

LDSO PICK

s01 s10 s20 s30 s40 s50

Fwd

Bwd

RANDOM PICK

s01 s10 s20 s30 s40 s50

Fwd

Bwd

Fig. 4. The alignment errors ealign using different points picking strategies. Each small square block is the color-coded alignment error for one run as
defined in [24] and each column corresponds to each sequence of the dataset. We run our method 10 times forward and 10 times backward on each
sequence to account for the nondeterministic behavior.

0 2 4
0

100

200

300

400

500
Traslational error

0 4 8 12 16 20
0

100

200

300

400

500
Rotation error

1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500
Scale error

ORIG DSO PICK
LDSO PICK
RANDOM PICK

Fig. 5. Accumulated translational, rotational and scale drifts using different
points picking strategies. X-axis is the error threshold, and Y-axis is the
number of runs whose errors are below the threshold.

2

0
-5

-8

0

-6

5

-4

10

15

-2

20

0

25

2 4 6 8-2

-4

-2

0

2

2

4

6

8

10

12

0

14

15-2 10
-4 5

0-6
-5

-8 -10

DSO
LDSO

Sequence 20 Sequence 25

Fig. 6. Trajectories in TUM-Mono dataset. The red line is the estimated
trajectory by original DSO where we can see obvious drift. The blue line
is the loop-closed trajectory.

TABLE I
ATE ERROR (M) ON ALL KITTI TRAINING SEQUENCES.

Sequence Mono DSO LDSO ORB-SLAM2
00 126.7 9.322 8.27
01 165.03 11.68 x
02 138.7 31.98 26.86
03 4.77 2.85 1.21
04 1.08 1.22 0.77
05 49.85 5.1 7.91
06 113.57 13.55 12.54
07 27.99 2.96 3.44
08 120.17 129.02 46.81
09 74.29 21.64 76.54
10 16.32 17.36 6.61

Fig. 7. Map before and after loop closure in LDSO (sequence 33).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
ORB-SLAM

MH V1 V2

Fwd

Bwd

DSO

MH V1 V2

Fwd

Bwd

LDSO

MH V1 V2

Fwd

Bwd

Fig. 8. Full trajectory RMSE of all sequences (Sim(3) aligned to the
ground truth). X-axis is the sequence name, which varies from MH 01 to
MH 05 and then V1 01 to V2 03.

0 0.1 0.2
RMSE

0

20

40

60

80

100

120

140

160
N

um
 o

f r
un

s
EuRoC MAV

DSO
LDSO
ORB

Fig. 9. RMSE on EuRoC MAV. The Y-axis shows the number of runs
with errors below the corresponding values on the X-axis. All errors are
calculated after Sim(3) alignment of the camera trajectories to the ground
truth.

thus they do not affect much the computation time of the
main thread. What we change in the main thread is adding an
extra feature extraction and descriptor computation step. But
unlike the feature-based approaches, they are not performed
for every frame but only for keyframes. Table II shows the
average computation time of the point selection step using
different picking strategies. The point selection in LDSO
takes slightly more time than that in DSO due to the feature
and descriptor extraction. It is worth noting that the values
are calculated over keyframes, thus the runtime impact will
be further moderated when averaging over all frames. The
program is tested on a laptop with Ubuntu 18.04 and Intel
i7-4770HQ CPU and 16GB RAM.

V. CONCLUSION

In this paper we propose an approach to integrate loop
closure and global map optimization into the fully direct

sequence 00 sequence 05 sequence 07

Ground-Truth
LDSO
DSO

Fig. 10. Sim(3) aligned trajectories of Kitti sequence 00, 05 and 07, which contains closed loops.

TABLE II
RUNTIME OF DIFFERENT POINT SELECTION STRATEGIES

LDSO Pick DSO Pick Random Pick
0.0218s 0.0126s 0.0027s

VO system DSO. DSO’s original point selection is adapted
to include repeatable features. For those we compute ORB
descriptors and build BoW models for loop closure detection.
We demonstrate that the point selection retains the original
robustness and accuracy of the odometry frontend, while
enabling the backend to effectively reduce global drift in
rotation, translation and scale. We believe the proposed
approach can be extended to future improvements of VO
or SLAM. For example, a photometric bundle adjustment
layer might increase the global map accuracy. In order to
ensure long-term operation, map maintenance strategies such
as keyframe culling and removal of redundant 3D points may
be employed. Combining the information from 3D points of
neighboring keyframes after loop closure may help to further
increase the accuracy of the reconstructed geometry.

REFERENCES

[1] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611–625, 2018.

[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Toward the Robust-Perception Age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[3] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha,
“Visual Simultaneous Localization and Mapping: A Survey,” Artificial
Intelligence Review, vol. 43, no. 1, pp. 55–81, 2015.

[4] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small
AR Workspaces,” in 6th International Symposium on Mixed and
Augmented Reality (ISMAR 2007), pp. 225–234, IEEE, 2007.

[5] R. Mur-Artal, J. Montiel, and J. D. Tardós, “ORB-SLAM: a Versatile
and Accurate Monocular SLAM System,” IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[6] C. Kerl, J. Sturm, and D. Cremers, “Dense Visual SLAM for RGB-D
Cameras,” in Interantional Conference on Intelligent Robot Systems
(IROS), 2013.

[7] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct
Monocular SLAM,” in Computer Vision–ECCV 2014, pp. 834–849,
Springer, 2014.

[8] S. Lynen, T. Sattler, M. Bosse, J. A. Hesch, M. Pollefeys, and
R. Siegwart, “Get Out of My Lab: Large-scale, Real-Time Visual-
Inertial Localization.,” in Robotics: Science and Systems, 2015.

[9] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Ver-
satile Monocular Visual-Inertial State Estimator,” arXiv preprint
arXiv:1708.03852, 2017.

[10] T. Schneider, M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen,
I. Gilitschenski, and R. Siegwart, “maplab: An Open Framework for
Research in Visual-inertial Mapping and Localization,” IEEE Robotics
and Automation Letters, 2018.

[11] N. Yang, R. Wang, X. Gao, and D. Cremers, “Challenges in Monocular
Visual Odometry: Photometric Calibration, Motion Bias and Rolling
Shutter Effect,” in arXiv:1705.04300, May 2017.

[12] T. Botterill, S. Mills, and R. Green, “Bag-of-Words-Driven, Single-
Camera Simultaneous Localization and Mapping,” Journal of Field
Robotics, vol. 28, no. 2, pp. 204–226, 2011.

[13] D. Filliat, “A Visual Bag of Words Method for Interactive Qualitative
Localization and Mapping,” in 2007 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3921–3926, IEEE, 2007.

[14] D. Galvez-Lopez and J. D. Tardos, “Bags of Binary Words for
Fast Place Recognition in Image Sequences,” IEEE Transactions on
Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

[15] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization
and Mapping in the Space of Appearance,” The International Journal
of Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.

[16] H. Strasdat, A. J. Davison, J. M. Montiel, and K. Konolige, “Double
Window Optimisation for Constant Time Visual SLAM,” in IEEE
International Conference on Computer Vision (ICCV), pp. 2352–2359,
IEEE, 2011.

[17] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based Visual-Inertial Odometry using Nonlinear Optimiza-
tion,” International Journal of Robotics Research, vol. 34, pp. 314–
334, MAR 2015.

[18] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE
Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[19] R. Wang, M. Schwörer, and D. Cremers, “Stereo DSO: Large-Scale
Direct Sparse Visual Odometry with Stereo Cameras,” International
Conference on Computer Vision (ICCV), Venice, Italy, 2017.

[20] J. Shi et al., “Good Features to Track,” in Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer
Society Conference on, pp. 593–600, IEEE, 1994.

[21] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
Efficient Alternative to SIFT or SURF,” in 2011 IEEE International
Conference on Computer Vision (ICCV), pp. 2564–2571, IEEE, 2011.

[22] G. Sibley, L. Matthies, and G. Sukhatme, “A Sliding Window Filter
for Incremental SLAM,” in Unifying Perspectives in Computational
and Robot Vision, pp. 103–112, Springer, 2008.

[23] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle Adjustment: A Modern Synthesis,” in Vision Algorithms:
Theory and Practice, pp. 298–372, Springer, 2000.

[24] J. Engel, V. Usenko, and D. Cremers, “A Photometrically Calibrated
Benchmark For Monocular Visual Odometry,” in arXiv:1607.02555,
July 2016.

[25] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2O: A General Framework for Graph Optimization,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 3607–
3613, IEEE, 2011.

[26] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The EuRoC Micro Aerial Vehicle
Datasets,” The International Journal of Robotics Research, 2016.

[27] A. Geiger, P. Lenz, and R. Urtasun, “Are We Ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” 2012 IEEE Conference
On Computer Vision And Pattern Recognition (CVPR), pp. 3354–3361,
2012.

	I INTRODUCTION
	II RELATED WORK
	III LOOP CLOSING IN DSO
	III-A Framework
	III-B Point Selection with Repeatable Features
	III-C Loop Candidates Proposal and Checking
	III-D Sliding Window and `39`42`"613A``45`47`"603ASim(3) Pose Graph

	IV EVALUATION
	IV-A The TUM-Mono Dataset
	IV-B The EuRoC MAV Dataset
	IV-C The KITTI Odometry Dataset
	IV-D Runtime Evaluation

	V CONCLUSION
	References

